메뉴 건너뛰기




Volumn , Issue , 2008, Pages 325-343

Cluster ensemble and Multi-objective clustering methods

Author keywords

[No Author keywords available]

Indexed keywords


EID: 58049217144     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59904-807-9.ch015     Document Type: Chapter
Times cited : (9)

References (61)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
    • Alizadeh, A.A., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503-511.
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.A.1
  • 4
    • 84899205255 scopus 로고    scopus 로고
    • Gene expression patterns and cancer classification: A self adaptive and incremental neural approach (tech. rep. tcdcs-2000-26)
    • Trinity College, Computer Science Department
    • Azuaje, F. (2000). Gene expression patterns and cancer classification: A self adaptive and incremental neural approach (Tech. Rep. TCDCS-2000-26). Dublin: Trinity College, Computer Science Department.
    • (2000) Dublin
    • Azuaje, F.1
  • 6
    • 0034601455 scopus 로고    scopus 로고
    • Molecular classification of cutaneous malignant melanoma by gene expression profiling
    • Bittner, M., et al. (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406(6795), 536-540.
    • (2000) Nature , vol.406 , Issue.6795 , pp. 536-540
    • Bittner, M.1
  • 9
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data
    • Costa, I.G., Carvalho, F.A.T., & Souto, M.C.P. (2004). Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology, 27(4), 623-631.
    • (2004) Genetics and Molecular Biology , vol.27 , Issue.4 , pp. 623-631
    • Costa, I.G.1    Carvalho, F.A.T.2    Souto, M.C.P.3
  • 11
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • D'haeseleer, P. (2005). How does gene expression clustering work? Nature Biotechnology, 23, 1499-1501.
    • (2005) Nature Biotechnology , vol.23 , pp. 1499-1501
    • D'haeseleer, P.1
  • 12
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genomewide expression patterns
    • Eisen, M.B., Spellman, P., Brown, P., & Botstein, D. (1998). Cluster analysis and display of genomewide expression patterns. Proc. Natl. Acad. Sci. USA, 95(25), 14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 14
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms-a position paper
    • Estivill-Castro, V. (2002). Why so many clustering algorithms-a position paper. SIGKDD Explorations, 4(1), 65-75.
    • (2002) SIGKDD Explorations , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 15
    • 84899200973 scopus 로고    scopus 로고
    • Um framework para análise de agrupamento baseado na combinação multi-objetivo de algoritmos de agrupamento (a framework for cluster analysis based in a multi-objective combination of clustering algorithms) [doctoral thesis]
    • Faceli, K. (2006). Um framework para análise de agrupamento baseado na combinação multi-objetivo de algoritmos de agrupamento (A framework for cluster analysis based in a multi-objective combination of clustering algorithms) [doctoral thesis]. São Carlos: Institute of Mathematics and Computer Science, University of São Paulo.
    • (2006) São Carlos: Institute of Mathematics and Computer Science, University of São Paulo
    • Faceli, K.1
  • 20
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T.R., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1
  • 21
    • 42449100235 scopus 로고    scopus 로고
    • Efficient ensemble methods for document clustering (tech. rep. tcd-cs-2006-48)
    • Trinity College, Department of Computer Science
    • Greene, D., & Cunningham, P. (2006). Efficient ensemble methods for document clustering (Tech. Rep. TCD-CS-2006-48). Dublin: Trinity College, Department of Computer Science.
    • (2006) Dublin
    • Greene, D.1    Cunningham, P.2
  • 25
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in postgenomic data analysis
    • Handl, J., & Knowles, J. (2005). Computational cluster validation in postgenomic data analysis. Bioinformatics, 21(15), 3201-3212.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2
  • 27
    • 0038494544 scopus 로고    scopus 로고
    • Analysis and visualization of gene expression microarray data in human cancer using self-organizing maps
    • Hautaniemi, S., et al. (2003). Analysis and visualization of gene expression microarray data in human cancer using self-organizing maps. Machine Learning, 52(1-2), 45-66.
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 45-66
    • Hautaniemi, S.1
  • 28
    • 33748805558 scopus 로고    scopus 로고
    • Gene-miner: Integration of cluster ensemble and text mining for comprehensive gene expression analysis
    • Hu, X. (2006). Gene-miner: Integration of cluster ensemble and text mining for comprehensive gene expression analysis. International Journal of Bioinformatics Research and Application, 2(3), 325-338.
    • (2006) International Journal of Bioinformatics Research and Application , vol.2 , Issue.3 , pp. 325-338
    • Hu, X.1
  • 33
    • 84899246582 scopus 로고    scopus 로고
    • on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia
    • on Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia.
  • 34
    • 14644399780 scopus 로고    scopus 로고
    • Clustering of diverse genomic data using information fusion
    • Kasturi, J., & Acharya, R. (2005). Clustering of diverse genomic data using information fusion. Bioinformatics, 21(4), 423-429.
    • (2005) Bioinformatics , vol.21 , Issue.4 , pp. 423-429
    • Kasturi, J.1    Acharya, R.2
  • 36
    • 63149100088 scopus 로고    scopus 로고
    • Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering
    • Korkmaz, E.E., Du, J., Alhajj, R., & Barker, K. (2006). Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intelligent Data Analysis, 10(2), 163-82.
    • (2006) Intelligent Data Analysis , vol.10 , Issue.2 , pp. 163-182
    • Korkmaz, E.E.1    Du, J.2    Alhajj, R.3    Barker, K.4
  • 41
    • 33748417841 scopus 로고    scopus 로고
    • Multi-objective evolutionary biclustering of gene expression data
    • Mitra, S., & Banka, H. (2006). Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition, 39(12), 2464-2477.
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2464-2477
    • Mitra, S.1    Banka, H.2
  • 42
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 52(1-2), 91-118.
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 43
    • 56349141955 scopus 로고    scopus 로고
    • (Tech. Rep. 2006-2047). Ithaca, NY: Cornell University, Department of Computer Science
    • Munson, A., & Caruana, R. (2006). Cluster ensembles for network anomaly detection (Tech. Rep. 2006-2047). Ithaca, NY: Cornell University, Department of Computer Science.
    • (2006) Cluster Ensembles for Network Anomaly Detection
    • Munson, A.1    Caruana, R.2
  • 47
    • 33846624274 scopus 로고    scopus 로고
    • Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering
    • Retrieved January 19, 2007, from
    • Pal, N.R., Aguan, K., Sharma, A., & Amari, S. (2007). Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC Bioinformatics, 8(5). Retrieved January 19, 2007, from http://www.biomedcentral.com/14712105/8/5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.5
    • Pal, N.R.1    Aguan, K.2    Sharma, A.3    Amari, S.4
  • 48
    • 3943113604 scopus 로고    scopus 로고
    • Theoretical comparison between the gini index and information gain criteria
    • Raileanu, L.E., & Stoffel, K. (2004). Theoretical comparison between the Gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 1(41), 77-93.
    • (2004) Annals of Mathematics and Artificial Intelligence , vol.1 , Issue.41 , pp. 77-93
    • Raileanu, L.E.1    Stoffel, K.2
  • 50
    • 0035845511 scopus 로고    scopus 로고
    • Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications
    • Sorlie, T., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, 98, 10869-10874.
    • (2001) Proceedings of the National Academy of Sciences , vol.98 , pp. 10869-10874
    • Sorlie, T.1
  • 52
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman, P., et al. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1
  • 53
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining partitions
    • Strehl, A., & Ghosh, J. (2002). Cluster ensembles-A knowledge reuse framework for combining partitions. Journal of Machine Learning Research, 3, 583-617.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 54
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation
    • Tamayo, P., et al. (1999). Interpreting patterns of gene expression with selforganizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, 96, 2907-2912.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 55
    • 33746903958 scopus 로고    scopus 로고
    • Integrative analysis of genome-wide experiments in the context of a large highthroughput data compendium
    • Tanay, A., Steinfeld, I., Kupiec, M., & Shamir, R. (2005). Integrative analysis of genome-wide experiments in the context of a large highthroughput data compendium. Molecular Systems Biology, 1.
    • (2005) Molecular Systems Biology , pp. 1
    • Tanay, A.1    Steinfeld, I.2    Kupiec, M.3    Shamir, R.4
  • 60
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh, E.J., et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1(2), 133-143.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.J.1
  • 61
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
    • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271.
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.