메뉴 건너뛰기




Volumn 58, Issue 1, 2009, Pages 26-32

A study on uncertainty-complexity tradeoffs for dynamic nonlinear sensor compensation

Author keywords

Multiobjective optimization (MOO); Sensor compensation; Support vector machines (SVMs)

Indexed keywords

IMAGE RETRIEVAL; MATHEMATICAL MODELS; OPTIMIZATION; SENSORS; SUPPORT VECTOR MACHINES; VECTORS;

EID: 57949090879     PISSN: 00189456     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIM.2008.2004985     Document Type: Conference Paper
Times cited : (10)

References (28)
  • 1
    • 33847364940 scopus 로고    scopus 로고
    • Low-power and low-cost implementation of SVMs for smart sensors
    • Feb
    • A. Boni, F. Pianegiani, and D. Petri, "Low-power and low-cost implementation of SVMs for smart sensors," IEEE Trans. Instrum. Meas., vol. 56, no. 1, pp. 39-44, Feb. 2007.
    • (2007) IEEE Trans. Instrum. Meas , vol.56 , Issue.1 , pp. 39-44
    • Boni, A.1    Pianegiani, F.2    Petri, D.3
  • 2
    • 57949096951 scopus 로고    scopus 로고
    • Energy-efficient signal classification in ad hoc wireless sensor networks
    • Jan
    • F. Pianegiani, M. Hu, A. Boni, and D. Petri, "Energy-efficient signal classification in ad hoc wireless sensor networks," IEEE Trans. Instrum. Meas., vol. 57, no. 1, pp. 190-196, Jan. 2008.
    • (2008) IEEE Trans. Instrum. Meas , vol.57 , Issue.1 , pp. 190-196
    • Pianegiani, F.1    Hu, M.2    Boni, A.3    Petri, D.4
  • 6
    • 36048953832 scopus 로고    scopus 로고
    • Model selection for power efficient analysis of measurement data
    • A. Marconato, A. Boni, B. Caprile, and D. Petri, "Model selection for power efficient analysis of measurement data," in Proc. IEEE IMTC 2006, pp. 1524-1529.
    • (2006) Proc. IEEE IMTC , pp. 1524-1529
    • Marconato, A.1    Boni, A.2    Caprile, B.3    Petri, D.4
  • 7
    • 0031077992 scopus 로고    scopus 로고
    • A capacitive pressure sensor interface using oversampling Δ - ∑ demodulation techniques
    • Feb
    • M. Yamada and K. Watanabe, "A capacitive pressure sensor interface using oversampling Δ - ∑ demodulation techniques," IEEE Trans. Instrum. Meas., vol. 46, no. 1, pp. 3-7, Feb. 1997.
    • (1997) IEEE Trans. Instrum. Meas , vol.46 , Issue.1 , pp. 3-7
    • Yamada, M.1    Watanabe, K.2
  • 9
    • 0032035554 scopus 로고    scopus 로고
    • Neural-network-based method of calibration and measurand reconstruction for a high-pressure measuring system
    • Apr
    • D. Massicotte, S. Legendre, and A. Barwicz, "Neural-network-based method of calibration and measurand reconstruction for a high-pressure measuring system," IEEE Trans. Instrum. Meas., vol. 47, no. 2, pp. 362-370, Apr. 1998.
    • (1998) IEEE Trans. Instrum. Meas , vol.47 , Issue.2 , pp. 362-370
    • Massicotte, D.1    Legendre, S.2    Barwicz, A.3
  • 10
    • 0036476804 scopus 로고    scopus 로고
    • ANN-based error reduction for experimentally modeled sensors
    • Feb
    • P. Arpaia, P. Daponte, D. Grimaldi, and L. Michaeli, "ANN-based error reduction for experimentally modeled sensors," IEEE Trans. Instrum. Meas., vol. 51, no. 1, pp. 23-30, Feb. 2002.
    • (2002) IEEE Trans. Instrum. Meas , vol.51 , Issue.1 , pp. 23-30
    • Arpaia, P.1    Daponte, P.2    Grimaldi, D.3    Michaeli, L.4
  • 11
    • 0034247029 scopus 로고    scopus 로고
    • An intelligent pressure sensor using neural networks
    • Aug
    • J. Patra, A. Kot, and G. Panda, "An intelligent pressure sensor using neural networks," IEEE Trans. Instrum. Meas., vol. 49, no. 4, pp. 829-834, Aug. 2000.
    • (2000) IEEE Trans. Instrum. Meas , vol.49 , Issue.4 , pp. 829-834
    • Patra, J.1    Kot, A.2    Panda, G.3
  • 12
    • 12344280395 scopus 로고    scopus 로고
    • Melt index modeling with support vector machines, partial least squares, and artificial neural networks
    • I.-S. Han, C. Han, and C.-B. Chung, "Melt index modeling with support vector machines, partial least squares, and artificial neural networks," J. Appl. Polym. Sci., vol. 95, no. 4, pp. 967-974, 2005.
    • (2005) J. Appl. Polym. Sci , vol.95 , Issue.4 , pp. 967-974
    • Han, I.-S.1    Han, C.2    Chung, C.-B.3
  • 13
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Feb
    • C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, Feb. 2002.
    • (2002) Int. J. Remote Sens , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 14
  • 15
    • 34648824689 scopus 로고    scopus 로고
    • A resource-constrained sensor dynamic compensation using a learning-from-examples approach
    • A. Marconato, M. Hu, C. Marzadro, A. Boni, and D. Petri, "A resource-constrained sensor dynamic compensation using a learning-from-examples approach," in Proc. IEEE IMTC, 2007, pp. 1-6.
    • (2007) Proc. IEEE IMTC , pp. 1-6
    • Marconato, A.1    Hu, M.2    Marzadro, C.3    Boni, A.4    Petri, D.5
  • 16
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Jan
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, Jan. 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 17
    • 48049101367 scopus 로고    scopus 로고
    • Uncertainty-complexity trade-offs for sensor compensation design
    • M. Gubian, A. Marconato, A. Boni, and D. Petri, "Uncertainty-complexity trade-offs for sensor compensation design," in Proc. Int. Workshop AMUEM, 2007, pp. 127-132.
    • (2007) Proc. Int. Workshop AMUEM , pp. 127-132
    • Gubian, M.1    Marconato, A.2    Boni, A.3    Petri, D.4
  • 20
    • 33845346175 scopus 로고    scopus 로고
    • Multi-objective optimization of support vector machines
    • Berlin, Germany: Springer-Verlag
    • T. Suttorp and C. Igel, "Multi-objective optimization of support vector machines," in Studies in Computational Intelligence, vol. 16. Berlin, Germany: Springer-Verlag, 2006, pp. 199-220.
    • (2006) Studies in Computational Intelligence , vol.16 , pp. 199-220
    • Suttorp, T.1    Igel, C.2
  • 21
    • 33847232994 scopus 로고    scopus 로고
    • Nonlinear measuring sensors influence on object identification quality
    • Ottawa, ON, Canada
    • M. Krasodomski, "Nonlinear measuring sensors influence on object identification quality," in Proc. IMTC, Ottawa, ON, Canada, 2005, pp. 523-526.
    • (2005) Proc. IMTC , pp. 523-526
    • Krasodomski, M.1
  • 22
    • 0033164634 scopus 로고    scopus 로고
    • Application of Wiener model predictive control (WMPC) to a pH neutralization experiment
    • Jul
    • J. R. S. J. Norquay and A. Palazoglu, "Application of Wiener model predictive control (WMPC) to a pH neutralization experiment," IEEE Trans. Control Syst. Technol., vol. 7, no. 4, pp. 437-445, Jul. 1999.
    • (1999) IEEE Trans. Control Syst. Technol , vol.7 , Issue.4 , pp. 437-445
    • Norquay, J.R.S.J.1    Palazoglu, A.2
  • 23
    • 0029483438 scopus 로고
    • Blind identification of LTI-ZMNL-LTI nonlinear channel models
    • Dec
    • D. H. S. Prakriya, "Blind identification of LTI-ZMNL-LTI nonlinear channel models," IEEE Trans. Signal Process., vol. 43, no. 12, pp. 3007-3013, Dec. 1995.
    • (1995) IEEE Trans. Signal Process , vol.43 , Issue.12 , pp. 3007-3013
    • Prakriya, D.H.S.1
  • 24
    • 57949096050 scopus 로고    scopus 로고
    • Online, Available
    • LIBSVM website. [Online]. Available: Http://www.csie.ntu.edu.tw/ cjlin/libsvm/
    • LIBSVM website
  • 25
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. IJCAI, 1995, pp. 1137-1143.
    • (1995) Proc. IJCAI , pp. 1137-1143
    • Kohavi, R.1
  • 27
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Sep
    • D. Meyer, F. Leisch, and K. Hornik, "The support vector machine under test," Neurocomputing, vol. 55, no. 1/2, pp. 169-186, Sep. 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 28
    • 84967588169 scopus 로고    scopus 로고
    • A comparison of support vector machines and artificial neural networks in hydrological/meteorological time series prediction
    • D. S. K. Karunasingha and S.-Y. Liong, "A comparison of support vector machines and artificial neural networks in hydrological/meteorological time series prediction," Adv. Geosci., vol. 6, pp. 91-96, 2006.
    • (2006) Adv. Geosci , vol.6 , pp. 91-96
    • Karunasingha, D.S.K.1    Liong, S.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.