-
2
-
-
0030220956
-
-
0960-9822 10.1016/S0960-9822(02)00641-3.
-
H. M. Nash, S. D. Bruner, O. D. Schärer, T. Kawate, T. A. Addona, E. Spooner, W. S. Lane, and G. L. Verdine, Curr. Biol. 0960-9822 10.1016/S0960-9822(02)00641-3 6, 968 (1996).
-
(1996)
Curr. Biol.
, vol.6
, pp. 968
-
-
Nash, H.M.1
Bruner, S.D.2
Schärer, O.D.3
Kawate, T.4
Addona, T.A.5
Spooner, E.6
Lane, W.S.7
Verdine, G.L.8
-
4
-
-
14844353576
-
-
0027-8424 10.1073/pnas.0409410102.
-
E. Yavin, A. K. Boal, E. D. A. Stemp, E. M. Boon, A. L. Livingston, V. L. O'Shea, S. S. David, and J. K. Barton, Proc. Natl. Acad. Sci. U.S.A. 0027-8424 10.1073/pnas.0409410102 102, 3546 (2005).
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 3546
-
-
Yavin, E.1
Boal, A.K.2
Stemp, E.D.A.3
Boon, E.M.4
Livingston, A.L.5
O'Shea, V.L.6
David, S.S.7
Barton, J.K.8
-
5
-
-
0242363184
-
-
0027-8424 10.1073/pnas.2035257100.
-
E. M. Boon, A. L. Livingston, M. H. Chmiel, S. S. David, and J. K. Barton, Proc. Natl. Acad. Sci. U.S.A. 0027-8424 10.1073/pnas.2035257100 100, 12543 (2003).
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 12543
-
-
Boon, E.M.1
Livingston, A.L.2
Chmiel, M.H.3
David, S.S.4
Barton, J.K.5
-
6
-
-
33645807371
-
-
0027-8424 10.1073/pnas.0509723103.
-
P. C. Blainey, A. M. van Oijen, A. Banerjee, G. L. Verdine, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 0027-8424 10.1073/pnas.0509723103 103, 5752 (2006).
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 5752
-
-
Blainey, P.C.1
Van Oijen, A.M.2
Banerjee, A.3
Verdine, G.L.4
Xie, X.S.5
-
12
-
-
0023147228
-
-
0022-2836 10.1016/0022-2836(87)90354-8.
-
O. G. Berg and P. H. von Hippel, J. Mol. Biol. 0022-2836 10.1016/0022-2836(87)90354-8 193, 723 (1987).
-
(1987)
J. Mol. Biol.
, vol.193
, pp. 723
-
-
Berg, O.G.1
Von Hippel, P.H.2
-
15
-
-
32644489284
-
-
0031-9007 10.1103/PhysRevLett.96.018104.
-
K. Klenin, H. Merlitz, J. Longowski, and C. -X. Wu, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.96.018104 96, 018104 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 018104
-
-
Klenin, K.1
Merlitz, H.2
Longowski, J.3
Wu, C.-X.4
-
16
-
-
10044223573
-
-
0006-3495 10.1529/biophysj.104.050765.
-
M. Slutsky and L. A. Mirny, Biophys. J. 0006-3495 10.1529/biophysj.104. 050765 87, 4021 (2004).
-
(2004)
Biophys. J.
, vol.87
, pp. 4021
-
-
Slutsky, M.1
Mirny, L.A.2
-
20
-
-
33746649820
-
-
0031-9007 10.1103/PhysRevLett.97.048302.
-
Y. M. Wang, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.97.048302 97, 048302 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 048302
-
-
Wang, Y.M.1
Austin, R.H.2
Cox, E.C.3
-
21
-
-
38849143886
-
-
C. Loverdo, O. B́nichou, M. Moreau, and R. Voituriez, Nat. Phys. 4, 134 (2008).
-
(2008)
Nat. Phys.
, vol.4
, pp. 134
-
-
Loverdo, C.1
B́nichou, O.2
Moreau, M.3
Voituriez, R.4
-
22
-
-
20444411178
-
-
0006-2960 10.1021/bi047494n.
-
A. K. Boal, E. Yavin, O. A. Lukianova, V. L. O'Shea, S. S. David, and J. K. Barton, Biochemistry 0006-2960 10.1021/bi047494n 44, 8397 (2005).
-
(2005)
Biochemistry
, vol.44
, pp. 8397
-
-
Boal, A.K.1
Yavin, E.2
Lukianova, O.A.3
O'Shea, V.L.4
David, S.S.5
Barton, J.K.6
-
23
-
-
0035997345
-
-
0066-4154 10.1146/annurev.biochem.71.083101.134037.
-
B. Giese, Annu. Rev. Biochem. 0066-4154 10.1146/annurev.biochem.71. 083101.134037 71, 51 (2002).
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 51
-
-
Giese, B.1
-
24
-
-
0034058321
-
-
0001-4842 10.1021/ar980059z.
-
G. B. Schuster, Acc. Chem. Res. 0001-4842 10.1021/ar980059z 33, 253 (2000).
-
(2000)
Acc. Chem. Res.
, vol.33
, pp. 253
-
-
Schuster, G.B.1
-
26
-
-
0027769742
-
-
0036-8075 10.1126/science.7802858.
-
C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossman, N. J. Turro, and J. K. Barton, Science 0036-8075 10.1126/science.7802858 262, 1025 (1993).
-
(1993)
Science
, vol.262
, pp. 1025
-
-
Murphy, C.J.1
Arkin, M.R.2
Jenkins, Y.3
Ghatlia, N.D.4
Bossman, S.H.5
Turro, N.J.6
Barton, J.K.7
-
29
-
-
5344275897
-
-
1063-651X 10.1103/PhysRevE.56.6656.
-
D. J. Bicout, Phys. Rev. E 1063-651X 10.1103/PhysRevE.56.6656 56, 6656 (1997).
-
(1997)
Phys. Rev. e
, vol.56
, pp. 6656
-
-
Bicout, D.J.1
-
31
-
-
84958443216
-
-
0022-1120 10.1017/S0022112064000817.
-
J. E. Broadwell, J. Fluid Mech. 0022-1120 10.1017/S0022112064000817 19, 401 (1964).
-
(1964)
J. Fluid Mech.
, vol.19
, pp. 401
-
-
Broadwell, J.E.1
-
33
-
-
37649028495
-
-
1063-651X 10.1103/PhysRevE.66.041804.
-
M. R. D'Orsogna and J. Rudnick, Phys. Rev. E 1063-651X 10.1103/PhysRevE.66.041804 66, 041804 (2002).
-
(2002)
Phys. Rev. e
, vol.66
, pp. 041804
-
-
D'Orsogna, M.R.1
Rudnick, J.2
-
34
-
-
0342961139
-
-
0031-9007 10.1103/PhysRevLett.85.4393.
-
R. Bruinsma, G. Gruner, M. R. D'Orsogna, and J. Rudnick, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.85.4393 85, 4393 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4393
-
-
Bruinsma, R.1
Gruner, G.2
D'Orsogna, M.R.3
Rudnick, J.4
-
35
-
-
0031889780
-
-
0027-8424
-
H. J. Helbock, K. B. Beckman, M. K. Shigenaga, P. B. Walter, A. A. Woodall, H. C. Yeo, and B. N. Ames, Proc. Natl. Acad. Sci. U.S.A. 95, 288 (1998). 0027-8424
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 288
-
-
Helbock, H.J.1
Beckman, K.B.2
Shigenaga, M.K.3
Walter, P.B.4
Woodall, A.A.5
Yeo, H.C.6
Ames, B.N.7
-
37
-
-
12844264221
-
-
0305-4470 10.1088/0305-4470/38/3/001.
-
M. R. D'Orsogna and T. Chou, J. Phys. A 0305-4470 10.1088/0305-4470/38/3/ 001 38, 531 (2005).
-
(2005)
J. Phys. A
, vol.38
, pp. 531
-
-
D'Orsogna, M.R.1
Chou, T.2
-
39
-
-
57849164788
-
-
Coli, the maximum deposition rate can be obtained by assuming a nucleoid radius of approximately b≈0.3 μm. Upon assuming a MutY diffusivity of D∼3× 10-7 cm2 /s, the Debye-Smoluchowski estimate is kon ∼4π Db≈6× 1010 M-1 s-1. For MutY concentration of C≈20 enzymes/femtoliter, the average time between depositions is (kC) -1 ≈0.0005 s.
-
For E. Coli, the maximum deposition rate can be obtained by assuming a nucleoid radius of approximately b≈0.3 μm. Upon assuming a MutY diffusivity of D∼3× 10-7 cm2 /s, the Debye-Smoluchowski estimate is kon ∼4π Db≈6× 1010 M-1 s-1. For MutY concentration of C≈20 enzymes/femtoliter, the average time between depositions is (kC) -1 ≈0.0005 s.
-
-
-
For, E.1
-
40
-
-
57849088923
-
-
While passive enzymes converge more quickly to enzymes when measured in terms of the deposition number n, CT repair enzymes converge more quickly when measured in terms of the number of adsorptions m=O (n1/3). In fact, the enzyme-lesion distance for repair enzymes scales as O (n-2/3) =O (m-2) compared to O (m-1) for passive enzymes with m=n (every deposition results in an adsorption).
-
While passive enzymes converge more quickly to enzymes when measured in terms of the deposition number n, CT repair enzymes converge more quickly when measured in terms of the number of adsorptions m=O (n1/3). In fact, the enzyme-lesion distance for repair enzymes scales as O (n-2/3) =O (m-2) compared to O (m-1) for passive enzymes with m=n (every deposition results in an adsorption).
-
-
-
|