-
1
-
-
33748593645
-
Mechanism design via machine learning
-
Balcan, M.-F.; Blum, A.; Hartline, J. D.; and Mansour, Y. 2005. Mechanism design via machine learning. In The 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 605-614.
-
(2005)
The 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005)
, pp. 605-614
-
-
Balcan, M.-F.1
Blum, A.2
Hartline, J.D.3
Mansour, Y.4
-
2
-
-
12244295760
-
Adversarial classification
-
Dalvi, N.; Domingos, P.; Mausam; Sanghai, S.; and Verma, D. 2004. Adversarial classification. In Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), 99-108.
-
(2004)
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004)
, pp. 99-108
-
-
Dalvi, N.1
Domingos, P.2
Mausam3
Sanghai, S.4
Verma, D.5
-
4
-
-
0013411860
-
Can PAC learning algorithms tolerate random attribute noise?
-
Goldman, S. A., and Sloan, R. H. 1995. Can PAC learning algorithms tolerate random attribute noise? Algorithmica 14(1):70-84.
-
(1995)
Algorithmica
, vol.14
, Issue.1
, pp. 70-84
-
-
Goldman, S.A.1
Sloan, R.H.2
-
5
-
-
4644369748
-
Nash Q-learning for general-sum stochastic games
-
Hu, J., and Wellman, M. 2004. Nash Q-learning for general-sum stochastic games. Journal of Machine Learning Research 4:1039-1069.
-
(2004)
Journal of Machine Learning Research
, vol.4
, pp. 1039-1069
-
-
Hu, J.1
Wellman, M.2
-
6
-
-
0027640858
-
Learning in the presence of malicious errors
-
Kearns, M., and Li, M. 1993. Learning in the presence of malicious errors. SIAM J. on Computing 22(4):807-837.
-
(1993)
SIAM J. on Computing
, vol.22
, Issue.4
, pp. 807-837
-
-
Kearns, M.1
Li, M.2
-
7
-
-
0019213986
-
Distributed interpretation: A model and experiment
-
Lesser, V. R., and Erman, L. D. 1980. Distributed interpretation: A model and experiment. IEEE Transactions on Computers 29(12): 1144-1163.
-
(1980)
IEEE Transactions on Computers
, vol.29
, Issue.12
, pp. 1144-1163
-
-
Lesser, V.R.1
Erman, L.D.2
-
8
-
-
0000511449
-
Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow
-
Littlestone, N. 1991. Redundant noisy attributes, attribute errors, and linear-threshold learning using Winnow. In COLT, 147-156.
-
(1991)
COLT
, pp. 147-156
-
-
Littlestone, N.1
-
9
-
-
85149834820
-
Markov games as a framework for multi-agent reinforcement learning
-
Littman, M. L. 1994. Markov games as a framework for multi-agent reinforcement learning. in ICML, 157-163.
-
(1994)
ICML
, pp. 157-163
-
-
Littman, M.L.1
-
10
-
-
84926076710
-
Introduction to mechanism design (for computer scientists)
-
Nisan, N, Roughgarden, T, Tar-dos, E, and Vazirani, V, eds, Cambridge University Press, chapter 9
-
Nisan, N. 2007. Introduction to mechanism design (for computer scientists). In Nisan, N.; Roughgarden, T.; Tar-dos, E.; and Vazirani, V., eds., Algorithmic Game Theory. Cambridge University Press, chapter 9.
-
(2007)
Algorithmic Game Theory
-
-
Nisan, N.1
-
11
-
-
36348938731
-
Learning voting trees
-
Procaccia, A. D.; Zohar, A.; Peleg, Y.; and Rosenschein, J. S. 2007. Learning voting trees. In The National Conference on Artificial Intelligence (AAAI 2007), 110-115.
-
(2007)
The National Conference on Artificial Intelligence (AAAI 2007)
, pp. 110-115
-
-
Procaccia, A.D.1
Zohar, A.2
Peleg, Y.3
Rosenschein, J.S.4
|