메뉴 건너뛰기




Volumn 28, Issue 1 SPEC. ISS., 2007, Pages 1-15

Using support vector machines and acoustic noise signal for degradation analysis of rotating machinery

Author keywords

Acoustic signal processing; Degradation analysis; Feature selection; Support vector machines

Indexed keywords

ACOUSTIC NOISE; ACOUSTIC SIGNAL PROCESSING; ACOUSTIC WAVES; ACOUSTICS; ARTIFICIAL INTELLIGENCE; CLASSIFIERS; CLUSTERING ALGORITHMS; DEGRADATION; FEATURE EXTRACTION; FEEDFORWARD NEURAL NETWORKS; GEARS; IMAGE RETRIEVAL; IMAGE SEGMENTATION; LEARNING SYSTEMS; MACHINERY; MULTILAYER NEURAL NETWORKS; PROBABILITY; PROBABILITY DISTRIBUTIONS; QUALITY ASSURANCE; RADIAL BASIS FUNCTION NETWORKS; ROTATING MACHINERY; ROTATION; SIGNAL PROCESSING; UNDERWATER ACOUSTICS; VECTORS;

EID: 57649240556     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-008-9081-6     Document Type: Article
Times cited : (3)

References (24)
  • 1
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • 2
    • D Bell H Wang 2000 A formalism for relevance and its application in feature subset selection Mach Learn 41 2 175 195
    • (2000) Mach Learn , vol.41 , pp. 175-195
    • Bell, D.1    Wang, H.2
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • 2
    • C Burges 1998 A tutorial on support vector machines for pattern recognition Knowl Discov Data Min 2 2 121 167
    • (1998) Knowl Discov Data Min , vol.2 , pp. 121-167
    • Burges, C.1
  • 4
    • 0005003019 scopus 로고
    • Aesthetic frequency classifications
    • D Doane 1985 Aesthetic frequency classifications Am Stat 30 181 183
    • (1985) Am Stat , vol.30 , pp. 181-183
    • Doane, D.1
  • 5
    • 0036612152 scopus 로고    scopus 로고
    • Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction
    • 3
    • S Goumas M Zervakis G Stavrakakis 2002 Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction IEEE Trans Instrum Meas 51 3 497 508
    • (2002) IEEE Trans Instrum Meas , vol.51 , pp. 497-508
    • Goumas, S.1    Zervakis, M.2    Stavrakakis, G.3
  • 6
    • 0031674597 scopus 로고    scopus 로고
    • Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition
    • R Heng M Nor 1998 Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition Appl Acoust 53 211 226
    • (1998) Appl Acoust , vol.53 , pp. 211-226
    • Heng, R.1    Nor, M.2
  • 7
    • 0034264830 scopus 로고    scopus 로고
    • Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals
    • 5
    • D Ho RB Randall 2000 Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals Mech Syst Signal Process 14 5 763 788
    • (2000) Mech Syst Signal Process , vol.14 , pp. 763-788
    • Ho, D.1    Randall, R.B.2
  • 8
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • 2
    • CW Hsu CJ Lin 2002 A comparison of methods for multiclass support vector machines IEEE Trans Neural Netw 13 2 415 425
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 9
    • 0017888657 scopus 로고
    • Experimental studies on ball bearing noise
    • V Jayaram F Jarchow 1978 Experimental studies on ball bearing noise Wear 46 321 326
    • (1978) Wear , vol.46 , pp. 321-326
    • Jayaram, V.1    Jarchow, F.2
  • 11
    • 3843073385 scopus 로고    scopus 로고
    • Analysis of vibration signal's time-frequency patterns for prediction of bearing's remaining useful life
    • H Lao S Zein-Sabatto 2001 Analysis of vibration signal's time-frequency patterns for prediction of bearing's remaining useful life Proc 33rd Southeast Symp Syst Theory 1 25 29
    • (2001) Proc 33rd Southeast Symp Syst Theory , vol.1 , pp. 25-29
    • Lao, H.1    Zein-Sabatto, S.2
  • 12
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J MacQueen 1967 Some methods for classification and analysis of multivariate observations Proc 5th Berkeley Symp Math Stat Probab 1 281 297
    • (1967) Proc 5th Berkeley Symp Math Stat Probab , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 13
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by the high frequency resonance technique a review
    • 1
    • P McFadden J Smith 1984 Vibration monitoring of rolling element bearings by the high frequency resonance technique a review Tribol Int 17 1 1 18
    • (1984) Tribol Int , vol.17 , pp. 1-18
    • McFadden, P.1    Smith, J.2
  • 15
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press Cambridge, MA, USA
    • Platt J (2000) Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, MA, USA, pp 61-74
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1    Smola, A.2    Bartlett, P.3    Schölkopf, B.4    Schuurmans, D.5
  • 17
    • 33749057295 scopus 로고    scopus 로고
    • Detection and classification of rolling-element bearing faults using support vector machines
    • Rojas A, Nandi A (2005) Detection and classification of rolling-element bearing faults using support vector machines. IEEE Workshop on Machine Learning for Signal Processing, pp 153-158
    • (2005) IEEE Workshop on Machine Learning for Signal Processing , pp. 153-158
    • Rojas, A.1    Nandi, A.2
  • 18
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • 7
    • B Samanta K Al-Balushi S Al-Araimi 2003 Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection Eng Appl Artif Intell 16 7 657 665
    • (2003) Eng Appl Artif Intell , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.2    Al-Araimi, S.3
  • 19
    • 44849122716 scopus 로고    scopus 로고
    • Using broad phonetic group experts for improved speech recognition
    • 3
    • P Scanlon D Ellis R Reilly 2007 Using broad phonetic group experts for improved speech recognition IEEE Trans Speech Audio Process 15 3 803 812
    • (2007) IEEE Trans Speech Audio Process , vol.15 , pp. 803-812
    • Scanlon, P.1    Ellis, D.2    Reilly, R.3
  • 22
    • 13244275197 scopus 로고    scopus 로고
    • Defect detection for bearings using envelope spectra of wavelet transform
    • 4
    • D Shi W Wang L Qu 2004 Defect detection for bearings using envelope spectra of wavelet transform J Vib Acoust 126 4 567 573
    • (2004) J Vib Acoust , vol.126 , pp. 567-573
    • Shi, D.1    Wang, W.2    Qu, L.3
  • 23
    • 0033336360 scopus 로고    scopus 로고
    • A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
    • N Tandon A Choudhury 1999 A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings Tribol Int 32 469 480
    • (1999) Tribol Int , vol.32 , pp. 469-480
    • Tandon, N.1    Choudhury, A.2
  • 24
    • 0025660887 scopus 로고
    • The application of the sound intensity technique to defect detection in rolling element bearings
    • 3
    • N Tandon B Nakra 1990 The application of the sound intensity technique to defect detection in rolling element bearings Appl Acoust 29 3 207 217
    • (1990) Appl Acoust , vol.29 , pp. 207-217
    • Tandon, N.1    Nakra, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.