메뉴 건너뛰기




Volumn 30, Issue 1, 2009, Pages 45-51

The improvement of total organic carbon forecasting using neural networks discharge model

Author keywords

Discharge; Forecasting; Neural networks; Prediction; Total organic carbon

Indexed keywords

DISCHARGE (FLUID MECHANICS); FORECASTING; ORGANIC CARBON; WATER LEVELS; WATER MANAGEMENT; WATER QUALITY;

EID: 57449083654     PISSN: 09593330     EISSN: 1479487X     Source Type: Journal    
DOI: 10.1080/09593330802468780     Document Type: Article
Times cited : (12)

References (12)
  • 1
    • 0033957764 scopus 로고    scopus 로고
    • Neural network for the prediction and forecasting of water resource variables: A review of modeling issues and applications
    • H.R. Maier and G.C. Dandy, Neural network for the prediction and forecasting of water resource variables: A review of modeling issues and applications, Environ. Modell. Softw. 15 (2000), pp. 101-124.
    • (2000) Environ. Modell. Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 2
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall-runoff process
    • K.L. Hsu, H.V. Gupta, and S. Sorooshian, Artificial neural network modeling of rainfall-runoff process, Water Resour. Res. 31 (1995), pp. 2517-2530.
    • (1995) Water Resour. Res , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 3
    • 0029416249 scopus 로고
    • Neural network models of rainfall runoff process
    • J. Smith and R.N. Eli, Neural network models of rainfall runoff process, J. Water Resour. Plann. Manage. - ASCE 121 (1995), pp. 499-508.
    • (1995) J. Water Resour. Plann. Manage. - ASCE , vol.121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 4
    • 0033019602 scopus 로고    scopus 로고
    • Short-term streamflow forecasting using artificial neural networks
    • C.M. Zealand, D.H. Burn, and S.P. Simonovic, Short-term streamflow forecasting using artificial neural networks, J.Hydrol. 214 (1999), pp. 32-48.
    • (1999) J.Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 5
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • O. Kisi, Streamflow forecasting using different artificial neural network algorithms, J. Hydrol. Eng., 12 (2007), pp. 532-539.
    • (2007) J. Hydrol. Eng , vol.12 , pp. 532-539
    • Kisi, O.1
  • 6
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • H.R. Maier and G.C. Dandy, The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res. 32 (1996), pp. 1013-1022.
    • (1996) Water Resour. Res , vol.32 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 7
    • 0031239528 scopus 로고    scopus 로고
    • Forecastiong raw-water quality parameters for the north Saskatchewan river by neural network modeling
    • Q. Zhang and S.J. Stanley, Forecastiong raw-water quality parameters for the north Saskatchewan river by neural network modeling, Water Res. 31 (1997), pp. 2340-2350.
    • (1997) Water Res , vol.31 , pp. 2340-2350
    • Zhang, Q.1    Stanley, S.J.2
  • 8
    • 0042477618 scopus 로고    scopus 로고
    • Identification of land use with water quality data in stormwater using a neural network
    • H.J. Ha and M.K. Stenstrom, Identification of land use with water quality data in stormwater using a neural network, Water Res. 37 (2003), pp. 4222-4230.
    • (2003) Water Res , vol.37 , pp. 4222-4230
    • Ha, H.J.1    Stenstrom, M.K.2
  • 9
    • 9944260305 scopus 로고    scopus 로고
    • Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques
    • P. Chaves, T. Tsukatani, and T. Kojiri, Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques, Math.Comput. Simulat. 67 (2004), pp. 419-432.
    • (2004) Math.Comput. Simulat , vol.67 , pp. 419-432
    • Chaves, P.1    Tsukatani, T.2    Kojiri, T.3
  • 11
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • P.C. Nayak, K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri, A neuro-fuzzy computing technique for modeling hydrological time series, J. Hydrol. 291 (2004), pp. 52-66.
    • (2004) J. Hydrol , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 12
    • 45849090754 scopus 로고    scopus 로고
    • Application of artificial intelligence models in water quality forecasting
    • I.S. Yeon, J.H Kim, and K.W. Jun, Application of artificial intelligence models in water quality forecasting, Environ. Technol. 29 (2008), pp. 625-631.
    • (2008) Environ. Technol , vol.29 , pp. 625-631
    • Yeon, I.S.1    Kim, J.H.2    Jun, K.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.