-
1
-
-
0003857778
-
A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models
-
Tech. Rep. TR-97-021, International Computer Science Institute, Berkeley CA
-
BILMES J. A.: A Gentle Tutorial on the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Tech. Rep. TR-97-021, International Computer Science Institute, Berkeley CA, 1998.
-
(1998)
-
-
BILMES, J.A.1
-
4
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
CHAWLA N, V., JAPKOWICZ N., KOTCZ A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6, 1 (2004), 1-6.
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
CHAWLA, N.V.1
JAPKOWICZ, N.2
KOTCZ, A.3
-
5
-
-
1942421135
-
The geometry of roc space: Understanding machine learning metrics through roc isometrics
-
FLACH P. A.: The geometry of roc space: Understanding machine learning metrics through roc isometrics. In ICML (2003), pp. 194-201.
-
(2003)
ICML
, pp. 194-201
-
-
FLACH, P.A.1
-
6
-
-
33845536164
-
The class imbalance problem: A systematic study
-
JAPKOWICZ N., STEPHEN S.: The class imbalance problem: A systematic study. Intell. Data Anal. 6, 5 (2002), 429-449.
-
(2002)
Intell. Data Anal
, vol.6
, Issue.5
, pp. 429-449
-
-
JAPKOWICZ, N.1
STEPHEN, S.2
-
7
-
-
57349143702
-
-
MC LACHLAN G. J., KR1SHNAN T.: The EM Algorithm and Extensions. John Wiley & Sons, 1997.
-
MC LACHLAN G. J., KR1SHNAN T.: The EM Algorithm and Extensions. John Wiley & Sons, 1997.
-
-
-
-
8
-
-
0001595997
-
Neural network classifiers estimate bayesian a posteriori probabilities
-
M.D.RICHARD, R.P.LIPPMANN: Neural network classifiers estimate bayesian a posteriori probabilities. Neural Computation 3 (1991), 461-483.
-
(1991)
Neural Computation
, vol.3
, pp. 461-483
-
-
RICHARD, M.D.1
LIPPMANN, R.P.2
-
9
-
-
0035283313
-
Robust classification for imprecise environments
-
PROVOST F., FAWCETT T.: Robust classification for imprecise environments. Much. Learn. 42, 3 (2001). 203-231.
-
(2001)
Much. Learn
, vol.42
, Issue.3
, pp. 203-231
-
-
PROVOST, F.1
FAWCETT, T.2
-
10
-
-
24644511306
-
Diagram structure recognition by bayesian conditional random fields
-
Washington, DC, USA, IEEE Computer Society, pp
-
QI Y., SZUMMER M., MINKA T. P.: Diagram structure recognition by bayesian conditional random fields, In CVPR'05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 2 (Washington, DC, USA, 2005), IEEE Computer Society, pp. 191-196.
-
(2005)
CVPR'05: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
, vol.2
, pp. 191-196
-
-
QI, Y.1
SZUMMER, M.2
MINKA, T.P.3
-
13
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
SAERENS M., LATINNE P., DECAESTECKER C: Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computation 14, 1 (2002), 21-41.
-
(2002)
Neural Computation
, vol.14
, Issue.1
, pp. 21-41
-
-
SAERENS, M.1
LATINNE, P.2
DECAESTECKER, C.3
|