메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1405-1412

Evolving neural networks for fractured domains

Author keywords

NEAT; Neuroevolution; RBF networks

Indexed keywords

CONTROL SYSTEM SYNTHESIS; FRACTURE; MACHINE LEARNING; REINFORCEMENT LEARNING;

EID: 57349126178     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1389095.1389366     Document Type: Conference Paper
Times cited : (15)

References (40)
  • 1
    • 0031377623 scopus 로고    scopus 로고
    • Evolving basis functions with dynamic receptive fields
    • Man, and Cybernetics
    • P. J. Angeline. Evolving basis functions with dynamic receptive fields. In IEEE International Conference on Systems, Man, and Cybernetics, volume 5, pages 4109-4114, 1997.
    • (1997) IEEE International Conference on Systems , vol.5 , pp. 4109-4114
    • Angeline, P.J.1
  • 2
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding and modeling. IEEE Trans. Information Theory, 44(6):2743-2760, 1998.
    • (1998) IEEE Trans. Information Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 3
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • S. A. Billings and G. L. Zheng. Radial basis function network configuration using genetic algorithms. Neural Networks, 8:877-890, 1995.
    • (1995) Neural Networks , vol.8 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 6
    • 0031639823 scopus 로고    scopus 로고
    • Evolving hybrid rbf-mlp networks using combinedgenetic/unsupervised/supervised learning
    • N. Chaiyaratana and A. M. S. Zalzala. Evolving hybrid rbf-mlp networks using combinedgenetic/unsupervised/supervised learning. In UKACC International Conference on Control, volume 1, pages 330-335, 1998.
    • (1998) UKACC International Conference on Control , vol.1 , pp. 330-335
    • Chaiyaratana, N.1    Zalzala, A.M.S.2
  • 9
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. Fernandez, and A. Diaz. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 14:1478-1495, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.5    Diaz, A.6
  • 10
    • 0012329219 scopus 로고    scopus 로고
    • A comparison between cellular encoding and direct encoding for genetic neural networks
    • J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, MIT Press
    • F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct encoding for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 81-89. MIT Press, 1996.
    • (1996) Genetic Programming 1996: Proceedings of the First Annual Conference , pp. 81-89
    • Gruau, F.1    Whitley, D.2    Pyeatt, L.3
  • 13
    • 0242637124 scopus 로고    scopus 로고
    • Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks
    • L. Guo, D.-S. Huang, and W. Zhao. Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks. Electronics Letters, 39:1600-1601, 2003.
    • (2003) Electronics Letters , vol.39 , pp. 1600-1601
    • Guo, L.1    Huang, D.-S.2    Zhao, W.3
  • 14
    • 0035269549 scopus 로고    scopus 로고
    • A radial basis function method for global optimization
    • H. Gutmann. A radial basis function method for global optimization. Journal of Global Optimization, 19:201-227, 2001.
    • (2001) Journal of Global Optimization , vol.19 , pp. 201-227
    • Gutmann, H.1
  • 21
    • 34548765403 scopus 로고    scopus 로고
    • Point-to-point car racing: An initial study of evolution versus temporal difference learning
    • S. Lucas and J. Togelius. Point-to-point car racing: an initial study of evolution versus temporal difference learning. In IEEE Symposium on Computational Intelligence and Games, pages 260-267, 2007.
    • (2007) IEEE Symposium on Computational Intelligence and Games , pp. 260-267
    • Lucas, S.1    Togelius, J.2
  • 23
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 1:281-294, 1989.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 24
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park and I. W. Sandberg. Universal approximation using radial-basis-function networks. Neural Computation, 3:246-257, 1991.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 25
    • 1542329420 scopus 로고
    • Genetic set recombination and its application to neural network topology optimization
    • N. J. Radcliffe. Genetic set recombination and its application to neural network topology optimization. Neural Computing and Applications, 1(1):67-90, 1993.
    • (1993) Neural Computing and Applications , vol.1 , Issue.1 , pp. 67-90
    • Radcliffe, N.J.1
  • 27
    • 0346099405 scopus 로고    scopus 로고
    • A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms
    • H. Sarimveis, A. Alexandridis, S. Mazarakis, and G. Bafas. A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms. Computers and Chemical Engineering, 28:209-217, 2004.
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 209-217
    • Sarimveis, H.1    Alexandridis, A.2    Mazarakis, S.3    Bafas, G.4
  • 30
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2), 2002.
    • (2002) Evolutionary Computation , vol.10 , Issue.2
    • Stanley, K.O.1    Miikkulainen, R.2
  • 33
    • 37249034293 scopus 로고    scopus 로고
    • Keepaway soccer: From machine learning testbed to benchmark
    • I. Noda et al, editors, Springer Verlag, Berlin
    • P. Stone, G. Kuhlmann, M. E. Taylor, and Y. Liu. Keepaway soccer: From machine learning testbed to benchmark. In I. Noda et al., editors, RoboCup-2005: Robot Soccer World Cup IX, volume 4020, pages 93-105. Springer Verlag, Berlin, 2006.
    • (2006) RoboCup-2005: Robot Soccer World Cup IX , vol.4020 , pp. 93-105
    • Stone, P.1    Kuhlmann, G.2    Taylor, M.E.3    Liu, Y.4
  • 34
    • 33750259111 scopus 로고    scopus 로고
    • Comparing evolutionary and temporal difference methods for reinforcement learning
    • July
    • M. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and temporal difference methods for reinforcement learning. In Genetic and Evolutionary Computation Conference, pages 1321-28, July 2006.
    • (2006) Genetic and Evolutionary Computation Conference , pp. 1321-1328
    • Taylor, M.1    Whiteson, S.2    Stone, P.3
  • 35
    • 57349132773 scopus 로고    scopus 로고
    • J. Togelius, S. Lucas, H. D. Thang, J. Garibaldi, T. Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston, R. M. MacCallum, A. Gowrisankar, P. Burrow, and T. Haferlach. The 2007 IEEE CEC simulated car racing competition. Unpublished manuscript.
    • J. Togelius, S. Lucas, H. D. Thang, J. Garibaldi, T. Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston, R. M. MacCallum, A. Gowrisankar, P. Burrow, and T. Haferlach. The 2007 IEEE CEC simulated car racing competition. Unpublished manuscript.
  • 36
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16:264-280, 1971.
    • (1971) Theory of Probability and its Applications , vol.16 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 37
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis functioncenters and widths for time series prediction
    • B. Whitehead and T. Choate. Cooperative-competitive genetic evolution of radial basis functioncenters and widths for time series prediction. IEEE Transactions on Neural Networks, 7:869-880, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 869-880
    • Whitehead, B.1    Choate, T.2
  • 38
    • 27144549349 scopus 로고    scopus 로고
    • Classifiers that approximate functions
    • S. W. Wilson. Classifiers that approximate functions. Natural Computing, 1:211-234, 2002.
    • (2002) Natural Computing , vol.1 , pp. 211-234
    • Wilson, S.W.1
  • 39
    • 57349138690 scopus 로고    scopus 로고
    • S. W. Wilson. Classifier conditions using gene expression programming. Technical Report 2008001, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 2008.
    • S. W. Wilson. Classifier conditions using gene expression programming. Technical Report 2008001, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 2008.
  • 40
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.