메뉴 건너뛰기




Volumn , Issue , 2008, Pages 173-184

CRD: Fast co-clustering on large datasets utilizing sampling-based matrix decomposition

Author keywords

Co clustering; Matrix decomposition

Indexed keywords

CLUSTER ANALYSIS; COBALT; COBALT COMPOUNDS; DATA STRUCTURES; DECISION SUPPORT SYSTEMS; FLOW OF SOLIDS; INFORMATION MANAGEMENT;

EID: 57149147732     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1376616.1376637     Document Type: Conference Paper
Times cited : (27)

References (20)
  • 1
    • 12244261221 scopus 로고    scopus 로고
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In KDD, 2004.
    • A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In KDD, 2004.
  • 5
    • 77952375075 scopus 로고    scopus 로고
    • I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, 2003.
    • I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, 2003.
  • 6
    • 33749255098 scopus 로고    scopus 로고
    • C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization and. spectral clustering. In SDM, 2005.
    • C. Ding, X. He, and H. Simon. On the equivalence of nonnegative matrix factorization and. spectral clustering. In SDM, 2005.
  • 7
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for graph partitioning and data clustering. In ICDM, 2001.
    • (2001) ICDM
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 8
    • 33749575326 scopus 로고    scopus 로고
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In KDD, 2006.
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In KDD, 2006.
  • 9
    • 33751097630 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition
    • P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition. In SIAM Journal of Computing, 2005.
    • (2005) SIAM Journal of Computing
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 11
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, Maryland
    • G. Golub and A. Loan. Matrix computations. Johns Hopkins University Press, Baltimore, Maryland, 1996.
    • (1996) Matrix computations
    • Golub, G.1    Loan, A.2
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 14
    • 32344435747 scopus 로고    scopus 로고
    • T. Li. A general model for clustering binary data. In KDD, 2005.
    • T. Li. A general model for clustering binary data. In KDD, 2005.
  • 15
    • 32344445368 scopus 로고    scopus 로고
    • B. Long, Z. Zhang, and P. Yu. Co-clustering by block value decomposition. In KDD, 2005.
    • B. Long, Z. Zhang, and P. Yu. Co-clustering by block value decomposition. In KDD, 2005.
  • 16
    • 21144462902 scopus 로고    scopus 로고
    • Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
    • G. Natsoulis and et. al. Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures. Genome Res., 15:724-736, 2005.
    • (2005) Genome Res , vol.15 , pp. 724-736
    • Natsoulis, G.1    and et., al.2
  • 17
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • N. Slonim and N. Tishby. Document clustering using word clusters via the information bottleneck method. In SIGIR, 2000.
    • (2000) SIGIR
    • Slonim, N.1    Tishby, N.2
  • 18
    • 49749100928 scopus 로고    scopus 로고
    • J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs. In SDM, 2007.
    • J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs. In SDM, 2007.
  • 19
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization. In SIGIR, 2003.
    • (2003) SIGIR
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 20
    • 33749620002 scopus 로고    scopus 로고
    • Mining shifting-and-scaling co-regulation patterns on gene expression profiles
    • X. Xu, Y. Lu, A. Tung, and W. Wang, Mining shifting-and-scaling co-regulation patterns on gene expression profiles. In ICDE, 2006.
    • (2006) ICDE
    • Xu, X.1    Lu, Y.2    Tung, A.3    Wang, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.