메뉴 건너뛰기




Volumn , Issue , 2004, Pages 799-806

SVM-based generalized multiple-instance learning via approximate box counting

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL COMPLEXITY; CONFORMATIONS; HEURISTIC METHODS; IMAGE RETRIEVAL; MATHEMATICAL MODELS; MOLECULAR BIOLOGY; POLYNOMIALS; VECTORS;

EID: 14344261849     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (65)

References (21)
  • 3
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 31-71.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 6
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges and A. Smola (Eds.), chapter 11. MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges and A. Smola (Eds.), Advances in kernel methods: Support vector learning, chapter 11,169-184. MIT Press.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 7
    • 0001202403 scopus 로고
    • Monte-Carlo approximation algorithms for enumeration problems
    • Karp, R., Luby, M., & Madras, N. (1989). Monte-Carlo approximation algorithms for enumeration problems. Journal of Algorithms, 10, 429-448.
    • (1989) Journal of Algorithms , vol.10 , pp. 429-448
    • Karp, R.1    Luby, M.2    Madras, N.3
  • 8
    • 0033665668 scopus 로고    scopus 로고
    • Identification of novel multitransmembrane proteins from genomic databases using quasi-periodic structural properties
    • Kim, J., Moriyama, E. N., Warr, C. G., Clyne, P. J. & Carlson, J. R. (2000). Identification of novel multitransmembrane proteins from genomic databases using quasi-periodic structural properties. Bioinf, 16, 767-775.
    • (2000) Bioinf , vol.16 , pp. 767-775
    • Kim, J.1    Moriyama, E.N.2    Warr, C.G.3    Clyne, P.J.4    Carlson, J.R.5
  • 9
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow
    • San Mateo, CA: Morgan Kaufmann
    • Littlestone, N. (1991). Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow. Proceedings of the Fourth Annual Workshop on Computational Learning Theory (pp. 147-156). San Mateo, CA: Morgan Kaufmann.
    • (1991) Proceedings of the Fourth Annual Workshop on Computational Learning Theory , pp. 147-156
    • Littlestone, N.1
  • 11
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • Morgan Kaufmann, San Francisco, CA
    • Maron, O., & Ratan, A. L. (1998). Multiple-instance learning for natural scene classification. Proc. 15th International Conf. on Machine Learning (pp. 341-349). Morgan Kaufmann, San Francisco, CA.
    • (1998) Proc. 15th International Conf. on Machine Learning , pp. 341-349
    • Maron, O.1    Ratan, A.L.2
  • 16
    • 0000142982 scopus 로고
    • The complexity of enumeration and reliability problems
    • Valiant, L. G. (1979). The complexity of enumeration and reliability problems. SIAM J. of Computing, 8, 410-421.
    • (1979) SIAM J. of Computing , vol.8 , pp. 410-421
    • Valiant, L.G.1
  • 18
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • Wang, J., & Zucker, J. D. (2000). Solving the multiple-instance problem: A lazy learning approach. Proc. 17th Int. Conf. on Machine Learning (pp. 1119-1125).
    • (2000) Proc. 17th Int. Conf. on Machine Learning , pp. 1119-1125
    • Wang, J.1    Zucker, J.D.2
  • 20
    • 0012349465 scopus 로고    scopus 로고
    • EM-DD: An improved multiple-instance learning technique
    • Zhang, Q., & Goldman, S. A. (2001). EM-DD: An improved multiple-instance learning technique. Neural Information Processing Systems 14 (pp. 1073-1080).
    • (2001) Neural Information Processing Systems , vol.14 , pp. 1073-1080
    • Zhang, Q.1    Goldman, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.