-
1
-
-
33847690144
-
-
A. K. Geim & K. S. Novoselov, The Rise of Graphene, 6 NATURE MAT. 183-191 (2007). 2 K. S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, 438 NATURE 197-200 (2005); Y. Zhang et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene, 438 NATURE 201-204 (2005).
-
A. K. Geim & K. S. Novoselov, The Rise of Graphene, 6 NATURE MAT. 183-191 (2007). 2 K. S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, 438 NATURE 197-200 (2005); Y. Zhang et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene, 438 NATURE 201-204 (2005).
-
-
-
-
2
-
-
56549111040
-
-
See Geim & Novoselov, supra note 1, at 184
-
See Geim & Novoselov, supra note 1, at 184.
-
-
-
-
3
-
-
33645752733
-
-
K. S. Novoselov et al., Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene, 2 NATURE PHYS. 177-180 (2006).
-
K. S. Novoselov et al., Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene, 2 NATURE PHYS. 177-180 (2006).
-
-
-
-
4
-
-
33746764451
-
-
B. Partoens & F. M. Peeters, From graphene to graphite: Electronic structure around the K point, 74 PHYS. REV. B 075404 (2006).
-
B. Partoens & F. M. Peeters, From graphene to graphite: Electronic structure around the K point, 74 PHYS. REV. B 075404 (2006).
-
-
-
-
5
-
-
56549102966
-
-
See Geim & Novoselov, supra note 1, at 184 (For three or more layers, the spectra become increasingly complicated: Several charge carriers appear, and the conduction and valence bands start notably overlapping. This allows single-, double- and few- (3 to <10) layer graphene to be distinguished as three different types of 2D crystals ('graphenes'). Thicker structures should be considered, to all intents and purposes, as thin films of graphite.) (footnotes omitted).
-
See Geim & Novoselov, supra note 1, at 184 ("For three or more layers, the spectra become increasingly complicated: Several charge carriers appear, and the conduction and valence bands start notably overlapping. This allows single-, double- and few- (3 to <10) layer graphene to be distinguished as three different types of 2D crystals ('graphenes'). Thicker structures should be considered, to all intents and purposes, as thin films of graphite.") (footnotes omitted).
-
-
-
-
6
-
-
30544433621
-
-
See M. Henry Heines, Nano-Aerobics and the Patent System, 2 NANOTECH. L. & BUS. 335, 338 2005, discussing the use of nano in patents and examples of size ranges cited therein
-
See M. Henry Heines, "Nano-Aerobics" and the Patent System, 2 NANOTECH. L. & BUS. 335, 338 (2005) (discussing the use of "nano" in patents and examples of size ranges cited therein).
-
-
-
-
7
-
-
56549123965
-
-
Geim & Novoselov, supra note 1, at 184
-
Geim & Novoselov, supra note 1, at 184.
-
-
-
-
8
-
-
0036267495
-
-
M. S. Dresselhaus & G. Dresselhaus, Intercalation compounds of graphite. 51 ADV. PHYS. 186 (2002); H. Shioyama, Cleavage of graphite to graphene. 20 J. Mater. Sci. Lett. 499-500 (2001); L. Viculis et al., A chemical route to carbon nanoscrolls, 299 SCIENCE 1361 (2003); S. Horiuchi et al., Single graphene sheet detected in a carbon nanofilm, 84 APPL. PHYS. LETT. 2403-2405 (2004); S. Stankovich, et al., 16 J. MATER. CHEM. 155 (2006).
-
M. S. Dresselhaus & G. Dresselhaus, Intercalation compounds of graphite. 51 ADV. PHYS. 186 (2002); H. Shioyama, Cleavage of graphite to graphene. 20 J. Mater. Sci. Lett. 499-500 (2001); L. Viculis et al., A chemical route to carbon nanoscrolls, 299 SCIENCE 1361 (2003); S. Horiuchi et al., Single graphene sheet detected in a carbon nanofilm, 84 APPL. PHYS. LETT. 2403-2405 (2004); S. Stankovich, et al., 16 J. MATER. CHEM. 155 (2006).
-
-
-
-
9
-
-
23044442056
-
Two-dimensional atomic crystals
-
10451-10453
-
K. S. Novoselov et al., Two-dimensional atomic crystals, 102 PROC. NATL ACAD. SCI. USA 10451-10453 (2005).
-
(2005)
PROC. NATL ACAD. SCI. USA
, vol.102
-
-
Novoselov, K.S.1
-
10
-
-
56549087910
-
-
See Geim & Novoselov, supra note 1, at 184 (Epitaxial growth of graphene offers probably the only viable route towards electronic applications . . ..).
-
See Geim & Novoselov, supra note 1, at 184 ("Epitaxial growth of graphene offers probably the only viable route towards electronic applications . . ..").
-
-
-
-
11
-
-
0026836808
-
-
T. A. Land et al., STM investigation of single layer graphite structure produced on Pt(111) by hydrocarbon decomposition, 264 SURF. SCI. 261-270 (1992); A. Nagashima et al., Electronic states of monolayer graphite formed on TiC(111) surface, 291 SURF. SCI. 93-98 (1993).
-
T. A. Land et al., STM investigation of single layer graphite structure produced on Pt(111) by hydrocarbon decomposition, 264 SURF. SCI. 261-270 (1992); A. Nagashima et al., Electronic states of monolayer graphite formed on TiC(111) surface, 291 SURF. SCI. 93-98 (1993).
-
-
-
-
12
-
-
33749473677
-
-
J. Hass et al., Highly ordered graphene for two dimensional electronics, 89 APPL. PHYS. LETT. 143106 (2006).
-
J. Hass et al., Highly ordered graphene for two dimensional electronics, 89 APPL. PHYS. LETT. 143106 (2006).
-
-
-
-
13
-
-
56549108102
-
-
J. Kedzierski et al., Epitaxial graphene transistors on SiC substrates, arXiv:0801.2744vl (submitted Jan. 17, 2008), available at http://arxiv.org/ftp/arxiv/papers/0801/0801.2744.pdf.
-
J. Kedzierski et al., Epitaxial graphene transistors on SiC substrates, arXiv:0801.2744vl (submitted Jan. 17, 2008), available at http://arxiv.org/ftp/arxiv/papers/0801/0801.2744.pdf.
-
-
-
-
14
-
-
19944428003
-
-
C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, 108 J. PHYS. CHEM. B 19912-19916 (2004); C. Berger et al., Electronic confinement and coherence in patterned epitaxial graphene, 312 SCIENCE 1191-1196 (2006).
-
C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, 108 J. PHYS. CHEM. B 19912-19916 (2004); C. Berger et al., Electronic confinement and coherence in patterned epitaxial graphene, 312 SCIENCE 1191-1196 (2006).
-
-
-
-
15
-
-
33845628173
-
Graphene: Carbon in two dimensions, 10
-
T]here are some areas where graphene can be used straightaway. Gas sensors is one, See
-
See M. I. Katsnelson, Graphene: carbon in two dimensions, 10 MATERIALS TODAY 20, 26 (2007) ("[T]here are some areas where graphene can be used straightaway. Gas sensors is one.").
-
(2007)
MATERIALS TODAY
, vol.20
, pp. 26
-
-
Katsnelson, M.I.1
-
16
-
-
34548388792
-
Detection of Individual Gas Molecules Adsorbed on Graphene, 6
-
F. Schedin et al., Detection of Individual Gas Molecules Adsorbed on Graphene, 6 NATURE MATERIALS 652-655 (2007).
-
(2007)
NATURE MATERIALS
, vol.652-655
-
-
Schedin, F.1
-
18
-
-
56549102965
-
-
Kedzierski, supra note 14
-
Kedzierski, supra note 14.
-
-
-
-
19
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
C. Berger et at, Electronic confinement and coherence in patterned epitaxial graphene, 312 SCIENCE 1191-1196 (2006).
-
(2006)
SCIENCE
, vol.312
, pp. 1191-1196
-
-
Berger, C.1
et at2
-
20
-
-
42349100001
-
Chaotic Dirac billiard in graphene quantum dots, 320
-
L. A. Ponomarenko et al., Chaotic Dirac billiard in graphene quantum dots, 320 SCIENCE 356-358 (2008).
-
(2008)
SCIENCE
, vol.356-358
-
-
Ponomarenko, L.A.1
-
21
-
-
56549115679
-
-
Id. at 358 (Finally, we used our smallest devices (both QDs and QPCs) to increase dE by further decreasing their size using plasma etching. Some of the devices become overetched and stop conducting, but in other cases we have narrowed them down to a few nm so that they exhibit the transistor action even at room T . . . .).
-
Id. at 358 ("Finally, we used our smallest devices (both QDs and QPCs) to increase dE by further decreasing their size using plasma etching. Some of the devices become overetched and stop conducting, but in other cases we have narrowed them down to a few nm so that they exhibit the transistor action even at room T . . . .").
-
-
-
-
22
-
-
56549112254
-
-
Geim & Novoselov, supra note 1, at 189-190
-
Geim & Novoselov, supra note 1, at 189-190.
-
-
-
-
23
-
-
34547838457
-
-
M. Ohishi, Spin injection into a graphene thin film at room temperature, 46 JPN. J. APPL. PHYS. L605-L607 (2007).
-
M. Ohishi, Spin injection into a graphene thin film at room temperature, 46 JPN. J. APPL. PHYS. L605-L607 (2007).
-
-
-
-
24
-
-
85008030079
-
-
Ernie W. Hill et al., Spin-Valve Devices, 42 IEEE TRANS. MAGN. 2694-2696 (2006)
-
Ernie W. Hill et al., Spin-Valve Devices, 42 IEEE TRANS. MAGN. 2694-2696 (2006)
-
-
-
-
25
-
-
34547635051
-
Electronic spin transport and spin precession in single graphene layers at room temperature, 448
-
N. Tombros et al., Electronic spin transport and spin precession in single graphene layers at room temperature, 448 NATURE 571-574 (2007).
-
(2007)
NATURE
, vol.571-574
-
-
Tombros, N.1
-
26
-
-
56549089537
-
-
§ 103a, 2000
-
35 U.S.C. § 103(a) (2000).
-
35 U.S.C
-
-
-
27
-
-
56549131091
-
-
KSR International Co. v. Teleflex Inc, 127 S. Ct. 1727 (2007) (decided April 30, 2007).
-
KSR International Co. v. Teleflex Inc, 127 S. Ct. 1727 (2007) (decided April 30, 2007).
-
-
-
-
28
-
-
56549130613
-
-
Id. at 1741 (quoting In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006)).
-
Id. at 1741 (quoting In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006)).
-
-
-
-
29
-
-
56549095899
-
-
Takeda Chemical Indus, v. Alphapharm Pty., Ltd., 492 F.3d 1350 (Fed. Cir. 2007) (decided June 28, 2007).
-
Takeda Chemical Indus, v. Alphapharm Pty., Ltd., 492 F.3d 1350 (Fed. Cir. 2007) (decided June 28, 2007).
-
-
-
-
30
-
-
56549098454
-
-
Id. at 1357
-
Id. at 1357.
-
-
-
-
31
-
-
56549116931
-
-
PharmaStem Therapeutics, Inc. v. ViaCell, Inc., 491 F.3d 1342 (Fed. Cir. 2007) (decided July 9, 2007).
-
PharmaStem Therapeutics, Inc. v. ViaCell, Inc., 491 F.3d 1342 (Fed. Cir. 2007) (decided July 9, 2007).
-
-
-
-
32
-
-
56549096422
-
-
Id. at 1360
-
Id. at 1360.
-
-
-
-
33
-
-
56549114181
-
-
Aventis Pharma Deutschland GmbH v. King Pharmaceuticals, Inc., 499 F.3d 1293 (Fed. Cir. 2007) (decided Sept. 11, 2007).
-
Aventis Pharma Deutschland GmbH v. King Pharmaceuticals, Inc., 499 F.3d 1293 (Fed. Cir. 2007) (decided Sept. 11, 2007).
-
-
-
-
34
-
-
56549104252
-
-
Id. at 1301
-
Id. at 1301.
-
-
-
-
35
-
-
56549095898
-
-
Ortho-McNeil Pharma. v. Mylan Laboratories, Inc., 520 F.3d 1358 (Fed. Cir. 2008) (decided Mar. 31, 2008).
-
Ortho-McNeil Pharma. v. Mylan Laboratories, Inc., 520 F.3d 1358 (Fed. Cir. 2008) (decided Mar. 31, 2008).
-
-
-
-
36
-
-
56549084846
-
-
Id. at 1364 (quoting KSR, 127 S. Ct. at 1742).
-
Id. at 1364 (quoting KSR, 127 S. Ct. at 1742).
-
-
-
-
37
-
-
34948814704
-
The Carbon Nanotube
-
For a detailed description of the carbon nanotube patent landscape, see, Patent Landscape, 3 NANOTECH. L. & BUS. 427 2006
-
For a detailed description of the carbon nanotube patent landscape, see John Miller & Drew Harris, The Carbon Nanotube Patent Landscape, 3 NANOTECH. L. & BUS. 427 (2006).
-
-
-
Miller, J.1
Harris, D.2
-
38
-
-
56549091319
-
-
See, for example, U.S. Patent No. 6,683,783 Smalley et al
-
See, for example, U.S. Patent No. 6,683,783 (Smalley et al.).
-
-
-
-
39
-
-
56549085593
-
-
U.S. Patent Application Publication 2003/0129305 Wu et al
-
U.S. Patent Application Publication 2003/0129305 (Wu et al.).
-
-
-
-
40
-
-
56549099249
-
-
U.S. Patent No. 5,186,919 Bunnell
-
U.S. Patent No. 5,186,919 (Bunnell).
-
-
-
-
41
-
-
56549122695
-
-
Geim & Novoselov, supra note 1, at 185
-
Geim & Novoselov, supra note 1, at 185.
-
-
-
-
42
-
-
56549093321
-
-
U.S. Patent No. 7,170,120 at Col. 1 lines 38-42
-
Datta et al. U.S. Patent No. 7,170,120 at Col. 1 lines 38-42.
-
-
-
Datta1
-
43
-
-
56549129102
-
-
For a more detailed discussion of this argument, see, available at, April 4
-
For a more detailed discussion of this argument, see Bryan Wilson, Graphene vs Carbon Nanotubes, available at http://nanolabweb.com/blog/ index.php/36/graphene-vs-carbon-nanotubes/ (April 4, 2008).
-
(2008)
Graphene vs Carbon Nanotubes
-
-
Wilson, B.1
|