-
1
-
-
0042035079
-
-
For Pd-catalyzed allylic substitution, see: (a) Negishi, E, Ed, J. Wiley: New York
-
For Pd-catalyzed allylic substitution, see: (a) Negishi, E., Ed.; Handbook of Palladium Chemistry for Organic Synthesis; J. Wiley: New York, 2002; Vol 2, p 1663.
-
(2002)
Handbook of Palladium Chemistry for Organic Synthesis
, vol.2
, pp. 1663
-
-
-
2
-
-
0344875134
-
-
For an overview of our contribution to Pd-catalyzed allylic substitution, see: b
-
For an overview of our contribution to Pd-catalyzed allylic substitution, see: (b) Kočovský, P. J. Organomet. Chem. 2003, 687, 256.
-
(2003)
J. Organomet. Chem
, vol.687
, pp. 256
-
-
Kočovský, P.1
-
3
-
-
0345614216
-
-
For an overview of catalysis by other metals, see: c
-
For an overview of catalysis by other metals, see: (c) Kočovský, P.; Malkov, A. V.; Vyskočil, Š.; Lloyd-Jones, G. C. Pure Appl. Chem. 1999, 71, 1425.
-
(1999)
Pure Appl. Chem
, vol.71
, pp. 1425
-
-
Kočovský, P.1
Malkov, A.V.2
Vyskočil, S.3
Lloyd-Jones, G.C.4
-
5
-
-
0034404053
-
-
3-complex 2 (ref 1). However, this may not always be the case, as known from the elucidation of the memory effect: (a) Lloyd-Jones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.; Vyskočil; Š.; Kočovský, P. Chem. - Eur. J. 2000, 6, 4348.
-
3-complex 2 (ref 1). However, this may not always be the case, as known from the elucidation of the "memory effect": (a) Lloyd-Jones, G. C.; Stephen, S. C.; Murray, M.; Butts, C. P.; Vyskočil; Š.; Kočovský, P. Chem. - Eur. J. 2000, 6, 4348.
-
-
-
-
6
-
-
0037020302
-
-
(b) Fairlamb, I. J. S.; Lloyd-Jones, G. C.; Vyskočil, Š.; Kočovský, P. Chem. - Eur. J. 2002, 8, 4443.
-
(2002)
Chem. - Eur. J
, vol.8
, pp. 4443
-
-
Fairlamb, I.J.S.1
Lloyd-Jones, G.C.2
Vyskočil, S.3
Kočovský, P.4
-
7
-
-
0344012070
-
-
(c) Gouriou, L.; Lloyd-Jones, G. C.; Vyskočil, Š.; Kočovský, P. J. Organomet. Chem. 2003, 687, 525.
-
(2003)
J. Organomet. Chem
, vol.687
, pp. 525
-
-
Gouriou, L.1
Lloyd-Jones, G.C.2
Vyskočil, S.3
Kočovský, P.4
-
8
-
-
6844254916
-
-
For overviews, see ref 1 and the following: (a) Trost, B. M, Van Vranken, D. L. Chem. Rev. 1996, 96, 395
-
For overviews, see ref 1 and the following: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
-
-
-
-
10
-
-
0006989799
-
-
(c) Helmchen, G.; Kudis, S.; Sennhenn, P.; Steinhagen, H. Pure Appl. Chem. 1997, 69, 513.
-
(1997)
Pure Appl. Chem
, vol.69
, pp. 513
-
-
Helmchen, G.1
Kudis, S.2
Sennhenn, P.3
Steinhagen, H.4
-
11
-
-
0000491494
-
-
In the Pd-catalyzed allylic substitution, the η3-complex 2 is formed via inversion of configuration (ref 1, For the retention pathway, see: (a) Starý, I, Kočovský, P. J. Am. Chem. Soc. 1989, 111, 4981
-
3-complex 2 is formed via inversion of configuration (ref 1). For the retention pathway, see: (a) Starý, I.; Kočovský, P. J. Am. Chem. Soc. 1989, 111, 4981.
-
-
-
-
13
-
-
0040553338
-
-
In the Mo-catalyzed allylic substitution, the η3-complex 2 has been shown to arise via retention of configuration: (a) Dvořák, D, Starý, I, Kočovský, P. J. Am. Chem. Soc. 1995, 117, 6130
-
3-complex 2 has been shown to arise via retention of configuration: (a) Dvořák, D.; Starý, I.; Kočovský, P. J. Am. Chem. Soc. 1995, 117, 6130.
-
-
-
-
14
-
-
1642576013
-
-
(b) Lloyd-Jones, G. C.; Krska, S. W.; Hughes, D. L.; Gouriou, L.; Bonnet, V. D.; Jack, K.; Sun, Y.; Reamer, R. A. J. Am. Chem. Soc. 2004, 126, 702.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 702
-
-
Lloyd-Jones, G.C.1
Krska, S.W.2
Hughes, D.L.3
Gouriou, L.4
Bonnet, V.D.5
Jack, K.6
Sun, Y.7
Reamer, R.A.8
-
15
-
-
0032503512
-
-
The Rh- and Ir-catalyzed allylic substitution is known to give products of overall retention of configuration. However, the stereochemistry of the individual steps has not been elucidated: (a) Evans, P. A, Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581
-
The Rh- and Ir-catalyzed allylic substitution is known to give products of overall retention of configuration. However, the stereochemistry of the individual steps has not been elucidated: (a) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
-
-
-
-
16
-
-
4644292550
-
-
(b) Evans, P. A.; Leahy, D. K.; Andrews, W. J.; Uraguchi, D. Angew. Chem., Int. Ed. 2004, 43, 4788.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 4788
-
-
Evans, P.A.1
Leahy, D.K.2
Andrews, W.J.3
Uraguchi, D.4
-
17
-
-
0242541854
-
-
(c) Evans, P. A.; Leahy, D. K.; Slieker, L. M. Tetrahedron: Asymmetry 2003, 14, 3613.
-
(2003)
Tetrahedron: Asymmetry
, vol.14
, pp. 3613
-
-
Evans, P.A.1
Leahy, D.K.2
Slieker, L.M.3
-
18
-
-
4644229326
-
-
(d) Shu, C.; Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 4794
-
-
Shu, C.1
Hartwig, J.F.2
-
19
-
-
33846933027
-
-
For a featured article, see: e
-
For a featured article, see: (e) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
-
(2007)
Chem. Commun
, pp. 675
-
-
Helmchen, G.1
Dahnz, A.2
Dübon, P.3
Schelwies, M.4
Weihofen, R.5
-
20
-
-
33748550311
-
-
The stereochemistry of the formation of the molybdenum complex 2 (M = Mo) from a chiral substrate 3, carried out in the presence of a chiral ligand, is controlled predominantly by the ligand. An isomerization in the case of a mismatched combination of 3 and L* has been demonstrated, so that even a racemic substrate 3 can be converted into a substitution product with high enantioselectivity: Malkov, A. V.; Starý, I.; Gouriou, L.; Lloyd-Jones, G. C.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem. - Eur. J. 2006, 12, 6910.
-
The stereochemistry of the formation of the molybdenum complex 2 (M = Mo) from a chiral substrate 3, carried out in the presence of a chiral ligand, is controlled predominantly by the ligand. An isomerization in the case of a "mismatched" combination of 3 and L* has been demonstrated, so that even a racemic substrate 3 can be converted into a substitution product with high enantioselectivity: Malkov, A. V.; Starý, I.; Gouriou, L.; Lloyd-Jones, G. C.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem. - Eur. J. 2006, 12, 6910.
-
-
-
-
21
-
-
10744225142
-
-
Stoner, E. J.; Peterson, M. J.; Allen, M. S.; DeMattei, J. A.; Haight, A. R.; Leanna, M. R.; Patel, S. R.; Plata, D. J.; Premchandran, R. H.; Rasmussen, M. J. Org. Chem. 2003, 68, 8847-8852.
-
(2003)
J. Org. Chem
, vol.68
, pp. 8847-8852
-
-
Stoner, E.J.1
Peterson, M.J.2
Allen, M.S.3
DeMattei, J.A.4
Haight, A.R.5
Leanna, M.R.6
Patel, S.R.7
Plata, D.J.8
Premchandran, R.H.9
Rasmussen, M.10
-
22
-
-
56449095710
-
-
8 featured the reaction of 3-quinolinecarboxaldehyde, which is closely related to 4j, our only successful substrate. As we have now demonstrated, this method is far from being general.
-
8 featured the reaction of 3-quinolinecarboxaldehyde, which is closely related to 4j, our only successful substrate. As we have now demonstrated, this method is far from being general.
-
-
-
-
23
-
-
56449087821
-
-
13C NMR spectroscopy.
-
13C NMR spectroscopy.
-
-
-
-
24
-
-
10844227997
-
-
For a review, see: a
-
For a review, see: (a) Ghanem, A.; Aboul-Enein, H. Y. Chirality 2005, 17, 1-15.
-
(2005)
Chirality
, vol.17
, pp. 1-15
-
-
Ghanem, A.1
Aboul-Enein, H.Y.2
-
27
-
-
56449115716
-
-
The configuration was corroborated by the reaction of the carbonates 5 in a transition-metal-catalyzed allylic substitution with an enantiomerically pure alcohol, whose absolute configuration was known. Details of this chemistry will be revealed in due course. For a preliminary account, see ref 1d
-
The configuration was corroborated by the reaction of the carbonates 5 in a transition-metal-catalyzed allylic substitution with an enantiomerically pure alcohol, whose absolute configuration was known. Details of this chemistry will be revealed in due course. For a preliminary account, see ref 1d.
-
-
-
|