메뉴 건너뛰기




Volumn 71, Issue 13-15, 2008, Pages 2481-2488

Learning long-term dependencies with recurrent neural networks

Author keywords

Backpropagation; Inflation; Long term dependencies; Memory; Recurrent neural networks; State space model; System identification; Vanishing gradient

Indexed keywords

BACKPROPAGATION; DATA STORAGE EQUIPMENT; DYNAMICAL SYSTEMS; IDENTIFICATION (CONTROL SYSTEMS); LONG SHORT-TERM MEMORY; STATE SPACE METHODS; TIME DELAY;

EID: 56449109755     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.12.036     Document Type: Conference Paper
Times cited : (35)

References (19)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Networks 5 (2) (1994) 157-166.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 5
    • 0042276525 scopus 로고    scopus 로고
    • The vanishing gradient problem during learning recurrent neural nets and problem solutions
    • S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertainty Fuzziness Knowl. Syst. 6 (2) (1998) 107-116.
    • (1998) Int. J. Uncertainty Fuzziness Knowl. Syst , vol.6 , Issue.2 , pp. 107-116
    • Hochreiter, S.1
  • 6
    • 0141741840 scopus 로고    scopus 로고
    • Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
    • J.F. Kolen, S. Kremer Eds, IEEE Press, New York
    • S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient flow in recurrent nets: The difficulty of learning long-term dependencies, in: J.F. Kolen, S. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001, pp. 237-243.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 237-243
    • Hochreiter, S.1    Bengio, Y.2    Frasconi, P.3    Schmidhuber, J.4
  • 7
  • 8
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, Multi-layer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 85030579746 scopus 로고    scopus 로고
    • J.F. Kolen, S.C. Kremer, A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001.
    • J.F. Kolen, S.C. Kremer, A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001.
  • 11
    • 0009589301 scopus 로고    scopus 로고
    • How to train neural networks
    • G.B. Orr, K.-R. Mueller Eds, Springer, Berlin
    • R. Neuneier, H.G. Zimmermann, How to train neural networks, in: G.B. Orr, K.-R. Mueller (Eds.), Neural Networks: Tricks of the Trade, Springer, Berlin, 1998, pp. 373-423.
    • (1998) Neural Networks: Tricks of the Trade , pp. 373-423
    • Neuneier, R.1    Zimmermann, H.G.2
  • 12
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: A survey, IEEE Trans. Neural Networks 6 (5) (1995) 1212-1228.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.1
  • 14
    • 34547898032 scopus 로고    scopus 로고
    • Recurrent neural networks are universal approximators
    • A.M. Schaefer, H.G. Zimmermann, Recurrent neural networks are universal approximators, Int. J. Neural Systems 17 (4) (2007) 253-263.
    • (2007) Int. J. Neural Systems , vol.17 , Issue.4 , pp. 253-263
    • Schaefer, A.M.1    Zimmermann, H.G.2
  • 17
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent connectionist networks
    • Y. Chauvin, D.E. Rumelhart Eds, Erlbaum, Hillsdale, NJ
    • R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent connectionist networks, in: Y. Chauvin, D.E. Rumelhart (Eds.), Backpropagation: Theory, Architectures, and Applications, Erlbaum, Hillsdale, NJ, 1990.
    • (1990) Backpropagation: Theory, Architectures, and Applications
    • Williams, R.J.1    Zipser, D.2
  • 18
    • 33749841590 scopus 로고    scopus 로고
    • Identification and forecasting of large dynamical systems by dynamical consistent neural networks
    • S. Haykin, J. Principe, T. Sejnowski, J. McWhirter Eds, MIT Press, Cambridge, MA
    • H.G. Zimmermann, R. Grothmann, A.M. Schaefer, C. Tietz, Identification and forecasting of large dynamical systems by dynamical consistent neural networks, in: S. Haykin, J. Principe, T. Sejnowski, J. McWhirter (Eds.), New Directions in Statistical Signal Processing: From Systems to Brain, MIT Press, Cambridge, MA, 2006, pp. 203-242.
    • (2006) New Directions in Statistical Signal Processing: From Systems to Brain , pp. 203-242
    • Zimmermann, H.G.1    Grothmann, R.2    Schaefer, A.M.3    Tietz, C.4
  • 19
    • 2942684766 scopus 로고    scopus 로고
    • Neural network architectures for the modeling of dynamical systems
    • J.F. Kolen, S. Kremer Eds, IEEE Press, New York
    • H.G. Zimmermann, R. Neuneier, Neural network architectures for the modeling of dynamical systems, in: J.F. Kolen, S. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001, pp. 311-350.
    • (2001) A Field Guide to Dynamical Recurrent Networks , pp. 311-350
    • Zimmermann, H.G.1    Neuneier, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.