-
1
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Networks 5 (2) (1994) 157-166.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
4
-
-
34547900017
-
-
MIT Press, Cambridge, MA
-
S. Haykin, J. Principe, T. Sejnowski, J. McWhirter, New Directions in Statistical Signal Processing: From Systems to Brain, MIT Press, Cambridge, MA, 2006.
-
(2006)
New Directions in Statistical Signal Processing: From Systems to Brain
-
-
Haykin, S.1
Principe, J.2
Sejnowski, T.3
McWhirter, J.4
-
5
-
-
0042276525
-
The vanishing gradient problem during learning recurrent neural nets and problem solutions
-
S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertainty Fuzziness Knowl. Syst. 6 (2) (1998) 107-116.
-
(1998)
Int. J. Uncertainty Fuzziness Knowl. Syst
, vol.6
, Issue.2
, pp. 107-116
-
-
Hochreiter, S.1
-
6
-
-
0141741840
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
J.F. Kolen, S. Kremer Eds, IEEE Press, New York
-
S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient flow in recurrent nets: The difficulty of learning long-term dependencies, in: J.F. Kolen, S. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001, pp. 237-243.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 237-243
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
8
-
-
0024880831
-
Multi-layer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, H. White, Multi-layer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
85030579746
-
-
J.F. Kolen, S.C. Kremer, A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001.
-
J.F. Kolen, S.C. Kremer, A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001.
-
-
-
-
10
-
-
0004069064
-
-
CRC Press international
-
L.R. Medsker, L.C. Jain, Recurrent Neural Networks: Design and Application, Computer Intelligence, vol. 1, CRC Press international, 1999.
-
(1999)
Recurrent Neural Networks: Design and Application, Computer Intelligence
, vol.1
-
-
Medsker, L.R.1
Jain, L.C.2
-
11
-
-
0009589301
-
How to train neural networks
-
G.B. Orr, K.-R. Mueller Eds, Springer, Berlin
-
R. Neuneier, H.G. Zimmermann, How to train neural networks, in: G.B. Orr, K.-R. Mueller (Eds.), Neural Networks: Tricks of the Trade, Springer, Berlin, 1998, pp. 373-423.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 373-423
-
-
Neuneier, R.1
Zimmermann, H.G.2
-
12
-
-
0029375851
-
Gradient calculations for dynamic recurrent neural networks: A survey
-
B. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: A survey, IEEE Trans. Neural Networks 6 (5) (1995) 1212-1228.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.5
, pp. 1212-1228
-
-
Pearlmutter, B.1
-
13
-
-
0000646059
-
Learning internal representations by error propagation
-
D.E. Rumelhart, et al, Eds, MIT Press, Cambridge, MA
-
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in: D.E. Rumelhart, et al. (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
14
-
-
34547898032
-
Recurrent neural networks are universal approximators
-
A.M. Schaefer, H.G. Zimmermann, Recurrent neural networks are universal approximators, Int. J. Neural Systems 17 (4) (2007) 253-263.
-
(2007)
Int. J. Neural Systems
, vol.17
, Issue.4
, pp. 253-263
-
-
Schaefer, A.M.1
Zimmermann, H.G.2
-
15
-
-
0142110571
-
-
Kluwer Academic Publishers, Dordrecht
-
A. Soofi, L. Cao, Modeling and Forecasting Financial Data, Techniques of Nonlinear Dynamics, Kluwer Academic Publishers, Dordrecht, 2002.
-
(2002)
Modeling and Forecasting Financial Data, Techniques of Nonlinear Dynamics
-
-
Soofi, A.1
Cao, L.2
-
17
-
-
0001765578
-
Gradient-based learning algorithms for recurrent connectionist networks
-
Y. Chauvin, D.E. Rumelhart Eds, Erlbaum, Hillsdale, NJ
-
R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent connectionist networks, in: Y. Chauvin, D.E. Rumelhart (Eds.), Backpropagation: Theory, Architectures, and Applications, Erlbaum, Hillsdale, NJ, 1990.
-
(1990)
Backpropagation: Theory, Architectures, and Applications
-
-
Williams, R.J.1
Zipser, D.2
-
18
-
-
33749841590
-
Identification and forecasting of large dynamical systems by dynamical consistent neural networks
-
S. Haykin, J. Principe, T. Sejnowski, J. McWhirter Eds, MIT Press, Cambridge, MA
-
H.G. Zimmermann, R. Grothmann, A.M. Schaefer, C. Tietz, Identification and forecasting of large dynamical systems by dynamical consistent neural networks, in: S. Haykin, J. Principe, T. Sejnowski, J. McWhirter (Eds.), New Directions in Statistical Signal Processing: From Systems to Brain, MIT Press, Cambridge, MA, 2006, pp. 203-242.
-
(2006)
New Directions in Statistical Signal Processing: From Systems to Brain
, pp. 203-242
-
-
Zimmermann, H.G.1
Grothmann, R.2
Schaefer, A.M.3
Tietz, C.4
-
19
-
-
2942684766
-
Neural network architectures for the modeling of dynamical systems
-
J.F. Kolen, S. Kremer Eds, IEEE Press, New York
-
H.G. Zimmermann, R. Neuneier, Neural network architectures for the modeling of dynamical systems, in: J.F. Kolen, S. Kremer (Eds.), A Field Guide to Dynamical Recurrent Networks, IEEE Press, New York, 2001, pp. 311-350.
-
(2001)
A Field Guide to Dynamical Recurrent Networks
, pp. 311-350
-
-
Zimmermann, H.G.1
Neuneier, R.2
|