-
1
-
-
56349146776
-
-
National Cancer Institute of Thailand, Available
-
National Cancer Institute of Thailand, "Cancer in Thailand 1995-1997," Available: http://www.nci.go.th/cancer_record/.
-
Cancer in Thailand 1995-1997
-
-
-
2
-
-
33750171907
-
Knowledge discovery in clinical databases with neural network evidence combination
-
T. Srinivasan, A. Chandrasekhar, J. Seshadri and J. B. S. Jonathan, "Knowledge discovery in clinical databases with neural network evidence combination," in Proc. International Conference on intelligent Sensing and Information, 2005, pp. 512-517.
-
(2005)
Proc. International Conference on intelligent Sensing and Information
, pp. 512-517
-
-
Srinivasan, T.1
Chandrasekhar, A.2
Seshadri, J.3
Jonathan, J.B.S.4
-
3
-
-
19344364327
-
Predicting breast cancer survivability: A comparison of three data mining methods
-
D. Delen, G. Walker and A. Kadam, "Predicting breast cancer survivability: a comparison of three data mining methods," J. Artificial Intelligence in Medicine, vol. 34, pp. 113-127, 2005.
-
(2005)
J. Artificial Intelligence in Medicine
, vol.34
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
4
-
-
33947278339
-
Breast cancer prediction using the isotonic separation technique
-
Y. U. Ryu, R. Chandrasekaran and V. S. Jacob, "Breast cancer prediction using the isotonic separation technique," J. European Operational Research, vol. 181, pp. 842-854, 2007.
-
(2007)
J. European Operational Research
, vol.181
, pp. 842-854
-
-
Ryu, Y.U.1
Chandrasekaran, R.2
Jacob, V.S.3
-
6
-
-
0035551937
-
Modeling medical prognosis: Survival analysis techniques
-
L. Ohno-Machado, "Modeling medical prognosis: survival analysis techniques," J. Biomedical Informatics, vol. 34, pp. 428-439, 2001.
-
(2001)
J. Biomedical Informatics
, vol.34
, pp. 428-439
-
-
Ohno-Machado, L.1
-
8
-
-
33846915801
-
A decision support system for breast cancer treatment based on data mining technologies and clinical practice guidelines
-
M. T. Skevofilakas, K. S. Nikita, P. H. Templaleksis, K. N. Birbas, I. G. Kaklamanos and G. N. Bonatsos, "A decision support system for breast cancer treatment based on data mining technologies and clinical practice guidelines," in IEEE-EMBS the Twenty-Seventh Annual International Conference on Medicine and Biology Society, 2005, pp. 2429-2432.
-
(2005)
IEEE-EMBS the Twenty-Seventh Annual International Conference on Medicine and Biology Society
, pp. 2429-2432
-
-
Skevofilakas, M.T.1
Nikita, K.S.2
Templaleksis, P.H.3
Birbas, K.N.4
Kaklamanos, I.G.5
Bonatsos, G.N.6
-
10
-
-
33749386201
-
Analysis of breast cancer using data mining & statistical techniques
-
X. Xiong, Y. Kim, Y. Baek, D. W. Rhee and S.-H. Kim., "Analysis of breast cancer using data mining & statistical techniques," in the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel, 2005, pp. 82-87.
-
(2005)
the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel
, pp. 82-87
-
-
Xiong, X.1
Kim, Y.2
Baek, Y.3
Rhee, D.W.4
Kim, S.-H.5
-
11
-
-
33947229062
-
Diagnosis of breast cancer tumor based on ICA and LS-SVM
-
C.-Y. Wang, C.-G. Wu, Y.-C. Liang and X.-C. Guo, "Diagnosis of breast cancer tumor based on ICA and LS-SVM," in Proc. IEEE International Conference on Machine Learning and Cybernetics, 2006, pp. 2565-2570.
-
(2006)
Proc. IEEE International Conference on Machine Learning and Cybernetics
, pp. 2565-2570
-
-
Wang, C.-Y.1
Wu, C.-G.2
Liang, Y.-C.3
Guo, X.-C.4
-
13
-
-
56349127231
-
Modest AdaBost' - teaching AdaBoost to generalize better
-
Russia
-
A. Vezhnevets and V. Vezhnevets, '" Modest AdaBost' - teaching AdaBoost to generalize better," Novosibirsk Akademgorodok, Russia 2005.
-
(2005)
Novosibirsk Akademgorodok
-
-
Vezhnevets, A.1
Vezhnevets, V.2
-
14
-
-
56349095759
-
Face Verification Using GaborWavelets and AdaBoost
-
Hong Kong
-
M. Zhou, and H, Wei, "Face Verification Using GaborWavelets and AdaBoost," in the Eighteenth International Conference on Pattern Recognition, Hong Kong, 2006, pp. 404407.
-
(2006)
the Eighteenth International Conference on Pattern Recognition
, pp. 404407
-
-
Zhou, M.1
Wei, H.2
-
15
-
-
33746599134
-
Boosting an associative classifier
-
Y. Sun, Y. Wang and A. K. C. Wong, "Boosting an associative classifier," IEEE Trans. Knowledge and Data Engineering vol. 18, pp. 988-992, 2006.
-
(2006)
IEEE Trans. Knowledge and Data Engineering
, vol.18
, pp. 988-992
-
-
Sun, Y.1
Wang, Y.2
Wong, A.K.C.3
-
17
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," J. Machine Learning, vol. 37(3), pp. 297-336, 1999.
-
(1999)
J. Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
19
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," J. the Annals of Statistics, vol. 38, pp. 337-374, 2000.
-
(2000)
J. the Annals of Statistics
, vol.38
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
20
-
-
0035478854
-
Random Forests
-
L. Breiman, "Random Forests," J. Machine Learning vol. 45, pp. 5-32, 2001.
-
(2001)
J. Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
23
-
-
33745919801
-
Building lightweight intrusion detection system based on random forest
-
Springer-Verlag Berlin Heidelberg
-
D. S. Kim, S. M. Lee and J. S. Park, "Building lightweight intrusion detection system based on random forest," in Advances in Neural Networks, vol. 3973, Springer-Verlag Berlin Heidelberg, 2006.
-
(2006)
Advances in Neural Networks
, vol.3973
-
-
Kim, D.S.1
Lee, S.M.2
Park, J.S.3
-
24
-
-
84861323365
-
Traffic flow prediction using adaboost algorithm with random forests as a weak learner
-
G. Leshem and Y. a. Ritov, "Traffic flow prediction using adaboost algorithm with random forests as a weak learner," J. International Journal of Intelligent Technology, vol. 2, pp. 1305-6417, 2007.
-
(2007)
J. International Journal of Intelligent Technology
, vol.2
, pp. 1305-6417
-
-
Leshem, G.1
Ritov, Y.A.2
-
25
-
-
65449146949
-
Support vector machines for outlier detection in cancers survivability prediction
-
to be published
-
J. Thongkam, G. Xu, Y. Zhang and F. Huang, "Support vector machines for outlier detection in cancers survivability prediction," in International Workshop on Health Data Management, to be published, 2008.
-
(2008)
International Workshop on Health Data Management
-
-
Thongkam, J.1
Xu, G.2
Zhang, Y.3
Huang, F.4
-
26
-
-
0003507803
-
-
Upper Saddle River, N.J, Prentice Hall
-
F. Cabena, P. Hadjinian, R. Stadler, J. Verhees and A. Zanasi, Discovering data mining from concept to implementation. Upper Saddle River, N.J.: Prentice Hall, 1998.
-
(1998)
Discovering data mining from concept to implementation
-
-
Cabena, F.1
Hadjinian, P.2
Stadler, R.3
Verhees, J.4
Zanasi, A.5
-
27
-
-
33746865585
-
Three-class ROC analysis-the equal error utility assumption and the optimality of three-class ROC surface using the ideal observer
-
X. He and E. C. Frey, "Three-class ROC analysis-the equal error utility assumption and the optimality of three-class ROC surface using the ideal observer," IEEE Trans. Medical Imaging, vol. 25(8), pp. 979-986, 2006.
-
(2006)
IEEE Trans. Medical Imaging
, vol.25
, Issue.8
, pp. 979-986
-
-
He, X.1
Frey, E.C.2
-
28
-
-
0031150149
-
Generating ROC curves for artificial neural, networks
-
K. Woods and K. W. Bowyer, "Generating ROC curves for artificial neural, networks," IEEE Trans. Medical Imaging, vol. 16(3), pp. 329-337, 1997.
-
(1997)
IEEE Trans. Medical Imaging
, vol.16
, Issue.3
, pp. 329-337
-
-
Woods, K.1
Bowyer, K.W.2
-
29
-
-
21844440820
-
Generalization bounds for the area under the ROC curve
-
S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled and D. Roth, "Generalization bounds for the area under the ROC curve," J. Machine Learning Research, vol. 6, pp. 393425, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 393425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
31
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
J. Huang and C. X. Ling, "Using AUC and accuracy in evaluating learning algorithms," IEEE Trans. Knowledge and Data Engineering, vol. 17(3), pp. 299-310, 2005.
-
(2005)
IEEE Trans. Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
33
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. the International Joint Conference on Artificial Intelligence, 1995, pp. 1137-1143.
-
(1995)
Proc. the International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
34
-
-
56349093726
-
An analysis of data selection methods on classifiers accuracy measures
-
Jan-Feb
-
J. Thongkam, G. Xu and Y. Zhang, "An analysis of data selection methods on classifiers accuracy measures," J. Korn Ken University, vol. 35(1), Jan-Feb 2008.
-
(2008)
J. Korn Ken University
, vol.35
, Issue.1
-
-
Thongkam, J.1
Xu, G.2
Zhang, Y.3
|