메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1279-1284

A neural network approach to ordinal regression

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; DECISION SUPPORT SYSTEMS; IMAGE CLASSIFICATION; INFORMATION MANAGEMENT; INFORMATION SERVICES; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES; VEGETATION; WEBSITES;

EID: 56349133747     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4633963     Document Type: Conference Paper
Times cited : (172)

References (42)
  • 8
    • 33745616114 scopus 로고    scopus 로고
    • A machine learning information retrieval approach to protein fold recognition
    • J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold recognition. Bioinformatics, 22:1456-1463, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 1456-1463
    • Cheng, J.1    Baldi, P.2
  • 12
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • W. Chu and S.S. Keerthi. Support vector ordinal regression. Neural Computation, 19(3), 2007.
    • (2007) Neural Computation , vol.19 , Issue.3
    • Chu, W.1    Keerthi, S.S.2
  • 18
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35:61-70, 1992.
    • (1992) Communications of the ACM , vol.35 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 22
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, MIT Press, Cambridge, MA
    • R. Herbrich, T. Graepel, and K. Obennayer. Large margin rank boundaries for ordinal regression. In A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115-132. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obennayer, K.3
  • 27
    • 0002704818 scopus 로고
    • A practical bayesian framework for back propagation. networks
    • D. J. C. MacKay. A practical bayesian framework for back propagation. networks. Neural Computation, 4:448-472, 1992.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 31
    • 0028961335 scopus 로고
    • SCOP: A. structural classification of proteins database for the investigation of sequences and structures
    • A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A. structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247:536-540, 1995.
    • (1995) J. Mol. Biol , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 33
    • 9444298517 scopus 로고    scopus 로고
    • S. Rajaram, A. Garg, X.S. Zhou, and T.S. Huang. Classification approach towards ranking and sorting problems. In Machine Learning: ECML 2003, 2837 of Lecture Notes in Artificail Intelligence (N. Lavrac, D. gamberger, H. Blocked and L Todorovski eds.), pages 301-312. Springer-Verlag, 2003.
    • S. Rajaram, A. Garg, X.S. Zhou, and T.S. Huang. Classification approach towards ranking and sorting problems. In Machine Learning: ECML 2003, vol. 2837 of Lecture Notes in Artificail Intelligence (N. Lavrac, D. gamberger, H. Blocked and L Todorovski eds.), pages 301-312. Springer-Verlag, 2003.
  • 34
    • 0001595997 scopus 로고
    • Neural, network classifiers estimate bayesian a-posteriori probabilities
    • M.D. Richard and R.P. Lippman. Neural, network classifiers estimate bayesian a-posteriori probabilities. Neural Computation, 3:461-483, 1991.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippman, R.P.2
  • 35
    • 56349169314 scopus 로고    scopus 로고
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Internal Representations by Error Propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. I: Foundations, pages 318-362. Bradford Books/MIT Press, Cambridge, MA., 1986.
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Internal Representations by Error Propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. I: Foundations, pages 318-362. Bradford Books/MIT Press, Cambridge, MA., 1986.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.