메뉴 건너뛰기




Volumn 78, Issue 17, 2008, Pages

Influence of lattice heating time on femtosecond laser-induced strain waves in InSb

Author keywords

[No Author keywords available]

Indexed keywords


EID: 56349091992     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.78.174302     Document Type: Article
Times cited : (21)

References (58)
  • 3
    • 56349153154 scopus 로고    scopus 로고
    • Ph.D. thesis, University of California
    • A. M. Lindenberg, Ph.D. thesis, University of California, 2001.
    • (2001)
    • Lindenberg, A.M.1
  • 4
    • 0000669423 scopus 로고
    • 10.1103/PhysRevB.49.15046
    • G. Tas and H. J. Maris, Phys. Rev. B 49, 15046 (1994). 10.1103/PhysRevB.49.15046
    • (1994) Phys. Rev. B , vol.49 , pp. 15046
    • Tas, G.1    Maris, H.J.2
  • 5
    • 0000747844 scopus 로고
    • 10.1103/PhysRevB.49.9985
    • O. B. Wright, Phys. Rev. B 49, 9985 (1994). 10.1103/PhysRevB.49.9985
    • (1994) Phys. Rev. B , vol.49 , pp. 9985
    • Wright, O.B.1
  • 14
    • 0006734829 scopus 로고
    • 10.1016/0370-1573(91)90086-2
    • J. Gronkowski, Phys. Rep. 206, 1 (1991). 10.1016/0370-1573(91)90086-2
    • (1991) Phys. Rep. , vol.206 , pp. 1
    • Gronkowski, J.1
  • 17
    • 0036979673 scopus 로고    scopus 로고
    • See, for example, 10.1038/nmat767
    • See, for example, S. K. Sundaram and E. Mazur, Nature Mater. 1, 217 (2002), and references therein. 10.1038/nmat767
    • (2002) Nature Mater. , vol.1 , pp. 217
    • Sundaram, S.K.1    Mazur, E.2
  • 19
  • 20
    • 0040129048 scopus 로고
    • 10.1088/0022-3719/16/30/022
    • H. S. Brandi and C. B. de Araújo, J. Phys. C 16, 5929 (1983). 10.1088/0022-3719/16/30/022
    • (1983) J. Phys. C , vol.16 , pp. 5929
    • Brandi, H.S.1    De Araújo, C.B.2
  • 22
  • 23
    • 36149043431 scopus 로고
    • 10.1088/0022-3719/15/3/005
    • H. M. van Driel and J. F. Young, J. Phys. C 15, L31 (1982). 10.1088/0022-3719/15/3/005
    • (1982) J. Phys. C , vol.15 , pp. 31
    • Van Driel, H.M.1    Young, J.F.2
  • 25
  • 26
    • 0003554309 scopus 로고
    • Landolt-Börnstein, New Series, Group III: Crystal and Solid State Physics Vol. Springer, Berlin, edited by O. Madelung
    • Semiconductors: Physics of Group IV Elements and III-V Compounds, Landolt-Börnstein, New Series, Group III: Crystal and Solid State Physics Vol. 17, Pt. A, edited by, O. Madelung, (Springer, Berlin, 1982).
    • (1982) Semiconductors: Physics of Group IV Elements and III-V Compounds , vol.17
  • 29
    • 0017910432 scopus 로고
    • 10.1016/0038-1101(78)90113-2
    • J. Shah, Solid-State Electron. 21, 43 (1978). 10.1016/0038-1101(78)90113- 2
    • (1978) Solid-State Electron. , vol.21 , pp. 43
    • Shah, J.1
  • 32
    • 0010790931 scopus 로고
    • 10.1103/PhysRevB.19.5928
    • H. M. van Driel, Phys. Rev. B 19, 5928 (1979). 10.1103/PhysRevB.19.5928
    • (1979) Phys. Rev. B , vol.19 , pp. 5928
    • Van Driel, H.M.1
  • 36
    • 0000572650 scopus 로고
    • 10.1103/PhysRevB.35.8166
    • H. M. van Driel, Phys. Rev. B 35, 8166 (1987). 10.1103/PhysRevB.35.8166
    • (1987) Phys. Rev. B , vol.35 , pp. 8166
    • Van Driel, H.M.1
  • 40
    • 0003998388 scopus 로고    scopus 로고
    • edited by D. E. Lide, 87th ed. (CRC, Boca Raton
    • CRC Handbook of Chemistry and Physics, edited by, D. E. Lide,, 87th ed. (CRC, Boca Raton, 2006a-2007).
    • (2006) CRC Handbook of Chemistry and Physics
  • 50
    • 56349143011 scopus 로고    scopus 로고
    • In the case of parabolic band approximation, Δ Ee = (ℏω - Eg) / (1+ me / mh) and Δ Eh = (me / mh) Δ Ee, where me and mh are the effective masses for electrons and holes.
    • In the case of parabolic band approximation, Δ Ee = (ℏω - Eg) / (1+ me / mh) and Δ Eh = (me / mh) Δ Ee, where me and mh are the effective masses for electrons and holes.
  • 51
    • 56349160632 scopus 로고    scopus 로고
    • note
    • In the case of InSb, a laser pulse (ℏω ≈ 1.55 eV) of fluence just below the melting threshold (∼10 mJ cm-2) creates an electron density on the order of 1021 cm-3. Because of the limited states in the Γ valley (≲ 1020 cm-3), an intervalley scattering time τΓ→' L (or τΓ→ X) smaller than (or comparable to) the laser-pulse duration is needed to clear out the phase space for further transitions.
  • 52
    • 56349136408 scopus 로고    scopus 로고
    • Energy and momentum conservations impose constrains on the maximum wave vector qmax of the LO phonons that interact with the electrons. Conservation of energy states that Ec (ki) ∼ Ec (kf) =∼., I LO whereas conservation of momentum, qmax = ki ∼ kf, with ki and kf standing for initial and final states of the electron in the k space. For InSb, with Ec (ki) ∼ 1.33 eV and ∼., I LO ∼ 0.024 eV, qmax ∼ 3Ã- 107 cm∼1.
    • Energy and momentum conservations impose constrains on the maximum wave vector qmax of the LO phonons that interact with the electrons. Conservation of energy states that Ec (ki) ∼ Ec (kf) =∼., I LO whereas conservation of momentum, qmax = ki ∼ kf, with ki and kf standing for initial and final states of the electron in the k space. For InSb, with Ec (ki) ∼ 1.33 eV and ∼., I LO ∼ 0.024 eV, qmax ∼ 3Ã- 107 cm∼1.
  • 53
    • 56349097281 scopus 로고    scopus 로고
    • For parabolic bands Ce can be calculated following chapter 2 in Ref., with He = F3/2 (νe) / F1/2 (νe), where νe = (μ e ∼ ECB) / (kB Te), μ e is the quasi-Fermi level for the electrons, and Fj (ν) is the Fermi-Dirac integral of the order j.
    • For parabolic bands Ce can be calculated following chapter 2 in Ref., with He = F3/2 (νe) / F1/2 (νe), where νe = (μ e ∼ ECB) / (kB Te), μ e is the quasi-Fermi level for the electrons, and Fj (ν) is the Fermi-Dirac integral of the order j.
  • 54
    • 56349108591 scopus 로고    scopus 로고
    • Chapter 23, Eq. (23.29) of Ref..
    • Chapter 23, Eq. (23.29) of Ref..
  • 55
    • 56349168011 scopus 로고    scopus 로고
    • For parabolic bands, kB Te ∼1 eV and Ne on the order of 1021 cm∼3, He ∼ 1.2.
    • For parabolic bands, kB Te ∼1 eV and Ne on the order of 1021 cm∼3, He ∼ 1.2.
  • 56
    • 56349118057 scopus 로고    scopus 로고
    • The resulting differential equation for the displacement u (z,t) is of the form ∼ 2 u/∼ t2 = c1 ∼ 2 u/∼ z2 +g (c2, z,t), where g is an arbitrary function that does not depend on u, and c1 and c2 ∼ { c2a, c2b, } are constants. An analytical solution of this type of equation can be found in Ref..
    • The resulting differential equation for the displacement u (z,t) is of the form ∼ 2 u/∼ t2 = c1 ∼ 2 u/∼ z2 +g (c2, z,t), where g is an arbitrary function that does not depend on u, and c1 and c2 ∼ { c2a, c2b, } are constants. An analytical solution of this type of equation can be found in Ref..
  • 57
    • 56349085582 scopus 로고    scopus 로고
    • A possible surface damage has been ruled out by comparing the unperturbed rocking curves before and after laser excitation. Visible sample damage (very faint mark) was first observed at a laser fluence of about 11 mJ/ cm2 but there was no measurable loss in diffraction efficiency. The surface damage was considerable at about 14 mJ/ cm2 with about 10% unpumped diffraction loss over 30 min.
    • A possible surface damage has been ruled out by comparing the unperturbed rocking curves before and after laser excitation. Visible sample damage (very faint mark) was first observed at a laser fluence of about 11 mJ/ cm2 but there was no measurable loss in diffraction efficiency. The surface damage was considerable at about 14 mJ/ cm2 with about 10% unpumped diffraction loss over 30 min.
  • 58
    • 56349104100 scopus 로고    scopus 로고
    • note
    • The optimal τ, and its uncertainty Δτ are determined by minimizing the chi square with respect to τ and ΔθB (Ref.45).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.