메뉴 건너뛰기




Volumn 72, Issue 1-3, 2008, Pages 471-479

The hidden neurons selection of the wavelet networks using support vector machines and ridge regression

Author keywords

Hidden neurons selection; Ridge regression; Support vector machine; Wavelet network

Indexed keywords

ALGORITHMS; GEARS; IMAGE RETRIEVAL; LEARNING SYSTEMS; LINEAR PROGRAMMING; LINEARIZATION; MULTILAYER NEURAL NETWORKS; NEURONS; REGRESSION ANALYSIS; VECTORS;

EID: 55949098696     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.12.009     Document Type: Article
Times cited : (30)

References (22)
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 3
    • 23044434528 scopus 로고    scopus 로고
    • A new class of wavelet networks for nonlinear system identification
    • Billings S.A., and Wei H.L. A new class of wavelet networks for nonlinear system identification. IEEE Trans. Neural Networks 16 (2005) 862-874
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 862-874
    • Billings, S.A.1    Wei, H.L.2
  • 4
    • 27944498559 scopus 로고    scopus 로고
    • The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions
    • Billings S.A., and Wei H.L. The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions. Int. J. Syst. Sci. 36 (2005) 137-152
    • (2005) Int. J. Syst. Sci. , vol.36 , pp. 137-152
    • Billings, S.A.1    Wei, H.L.2
  • 5
    • 55949107150 scopus 로고    scopus 로고
    • P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and support vector machines, in: Machine Learning Proceedings of the 15th International, San Francisco, CA, 1998. pp. 82-90.
    • P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and support vector machines, in: Machine Learning Proceedings of the 15th International, San Francisco, CA, 1998. pp. 82-90.
  • 6
    • 58149210009 scopus 로고
    • Predicting chaotic time-series with wavelet networks
    • Cao L.Y., Hong Y.G., Fang H.P., and He G.W. Predicting chaotic time-series with wavelet networks. Physica D 85 (1995) 225-238
    • (1995) Physica D , vol.85 , pp. 225-238
    • Cao, L.Y.1    Hong, Y.G.2    Fang, H.P.3    He, G.W.4
  • 7
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • Chen S., Billings S.A., and Luo W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50 (1989) 1873-1896
    • (1989) Int. J. Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 8
    • 0034379461 scopus 로고    scopus 로고
    • A modified Gram-Schmidt algorithm with iterative orthogonalization and column pivoting
    • Dax A. A modified Gram-Schmidt algorithm with iterative orthogonalization and column pivoting. Linear Algebra Appl. 310 (2000) 25-42
    • (2000) Linear Algebra Appl. , vol.310 , pp. 25-42
    • Dax, A.1
  • 9
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung G.M., and Mangasarian O.L. A feature selection Newton method for support vector machine classification. Computat. Optim. Appl. 28 (2004) 185-202
    • (2004) Computat. Optim. Appl. , vol.28 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 10
    • 0034309430 scopus 로고    scopus 로고
    • Order and delay selection for neural network modelling by identification of linearized models
    • Gomm J.B., and Yu D.L. Order and delay selection for neural network modelling by identification of linearized models. Int. J. Syst. Sci. 31 (2000) 1273-1283
    • (2000) Int. J. Syst. Sci. , vol.31 , pp. 1273-1283
    • Gomm, J.B.1    Yu, D.L.2
  • 11
    • 0037044082 scopus 로고    scopus 로고
    • Time series prediction using support vector machines, the orthogonal and the regularized orthogonal least-squares algorithms
    • Lee K.L., and Billings S.A. Time series prediction using support vector machines, the orthogonal and the regularized orthogonal least-squares algorithms. Int. J. Syst. Sci. 33 (2002) 811-821
    • (2002) Int. J. Syst. Sci. , vol.33 , pp. 811-821
    • Lee, K.L.1    Billings, S.A.2
  • 12
    • 19944407892 scopus 로고    scopus 로고
    • epsilon-SSVR: a smooth support vector machine for epsilon-insensitive regression
    • Lee Y.J., Hsieh W.F., and Huang C.M. epsilon-SSVR: a smooth support vector machine for epsilon-insensitive regression. IEEE Trans. Knowl. Data Eng. 17 (2005) 678-685
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 678-685
    • Lee, Y.J.1    Hsieh, W.F.2    Huang, C.M.3
  • 13
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural network
    • Lin T.N., Horne B.G., Tino P., and Giles C.L. Learning long-term dependencies in NARX recurrent neural network. IEEE Trans. Neural Networks 7 (1996) 1329-1338
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1329-1338
    • Lin, T.N.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 15
    • 33745801137 scopus 로고    scopus 로고
    • Exact 1-norm support vector machines via unconstrained convex differentiable minimization
    • Mangasarian O.L. Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J. Mach. Learn. Res. 7 (2006) 1517-1530
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1517-1530
    • Mangasarian, O.L.1
  • 16
    • 0031224757 scopus 로고    scopus 로고
    • Algorithms for minimal model structure detection in nonlinear dynamic system identification
    • Mao K.Z., and Billings S.A. Algorithms for minimal model structure detection in nonlinear dynamic system identification. Int. J. Control 68 (1997) 311-330
    • (1997) Int. J. Control , vol.68 , pp. 311-330
    • Mao, K.Z.1    Billings, S.A.2
  • 17
    • 0042525842 scopus 로고    scopus 로고
    • Neural-network construction and selection in nonlinear modeling
    • Rivals I., and Personnaz L. Neural-network construction and selection in nonlinear modeling. IEEE Trans. Neural Networks 14 (2003) 804-819
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 804-819
    • Rivals, I.1    Personnaz, L.2
  • 18
    • 0001379053 scopus 로고
    • Neural network adaptive wavelets for signal representation and classification
    • Szu H.H., Telfer B., and Kadambe S. Neural network adaptive wavelets for signal representation and classification. Opt. Eng. 31 (1992) 1907-1916
    • (1992) Opt. Eng. , vol.31 , pp. 1907-1916
    • Szu, H.H.1    Telfer, B.2    Kadambe, S.3
  • 19
    • 2442516362 scopus 로고    scopus 로고
    • Backstepping wavelet neural network control for indirect field-oriented induction motor drive
    • Wai R.J., and Chang H.H. Backstepping wavelet neural network control for indirect field-oriented induction motor drive. IEEE Trans. Neural Networks 15 (2004) 367-382
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 367-382
    • Wai, R.J.1    Chang, H.H.2
  • 20
    • 0742304416 scopus 로고    scopus 로고
    • Term and variable selection for non-linear system identification
    • Wei H.L., Billings S.A., and Liu J. Term and variable selection for non-linear system identification. Int. J. Control 77 (2004) 86-110
    • (2004) Int. J. Control , vol.77 , pp. 86-110
    • Wei, H.L.1    Billings, S.A.2    Liu, J.3
  • 21
    • 0036825823 scopus 로고    scopus 로고
    • A basis selection algorithm for wavelet neural networks
    • Xu J.H., and Ho D.W.C. A basis selection algorithm for wavelet neural networks. Neurocomputing 48 (2002) 681-689
    • (2002) Neurocomputing , vol.48 , pp. 681-689
    • Xu, J.H.1    Ho, D.W.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.