메뉴 건너뛰기




Volumn 31, Issue 10, 2000, Pages 1273-1283

Order anddelay selection for neural network modelling by identification of linearized models

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DELAY CONTROL SYSTEMS; IDENTIFICATION (CONTROL SYSTEMS); LINEARIZATION; NONLINEAR CONTROL SYSTEMS;

EID: 0034309430     PISSN: 00207721     EISSN: 14645319     Source Type: Journal    
DOI: 10.1080/00207720050165771     Document Type: Article
Times cited : (12)

References (24)
  • 2
    • 0026849117 scopus 로고
    • Determining model structure for neural models by network stripping
    • Bhat, N. V., and McAvoy, T. J., 1992, Determining model structure for neural models by network stripping. Computers and Chemical Engineering, 16, 271-281.
    • (1992) Computers and Chemical Engineering , vol.16 , pp. 271-281
    • Bhat, N.V.1    McAvoy, T.J.2
  • 3
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modelling non-linear dynamical systems
    • Billings, S. a., Jamaluddin, H. B., and Chen, s., 1992, Properties of neural networks with applications to modelling non-linear dynamical systems. International Journal of Control, 55, 193-224.
    • (1992) International Journal of Control , vol.55 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 4
    • 0029394502 scopus 로고
    • Model validity tests for multivariable nonlinear models including neural networks
    • Billings, S. A., and Zhu, Q. M., 1995, Model validity tests for multivariable nonlinear models including neural networks. International Journal of Control, 62, 749-766.
    • (1995) International Journal of Control , vol.62 , pp. 749-766
    • Billings, S.A.1    Zhu, Q.M.2
  • 6
    • 84954943722 scopus 로고
    • Neural networks for nonlinear dynamic system modelling and control
    • Chen, S., and Billings, S. A., 1992, Neural networks for nonlinear dynamic system modelling and control. International Journal of Control, 56, 319-346.
    • (1992) International Journal of Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.A.2
  • 8
    • 0030787191 scopus 로고    scopus 로고
    • Experiment design considerations for nonlinear system identification using neural networks
    • Doherty, S. K., Gomm, J. B., and Williams, D., 1997, Experiment design considerations for nonlinear system identification using neural networks. Computers and Chemical Engineering, 21, 327-346.
    • (1997) Computers and Chemical Engineering , vol.21 , pp. 327-346
    • Doherty, S.K.1    Gomm, J.B.2    Williams, D.3
  • 9
    • 0028465208 scopus 로고
    • Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
    • Elanayar V. T. S., and Shin, Y. C., 1994, Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Transactions on Neural Networks, 5, 594-603.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 594-603
    • Elanayar, V.T.S.1    Shin, Y.C.2
  • 10
    • 0030574990 scopus 로고    scopus 로고
    • Enhancing the nonlinear modelling capabilities of MLP neural networks using spread encoding
    • Gomm, J. B., Williams, D., Evans, J. T, Doherty, S. K., and Lisboa, P. J. G., 1996, Enhancing the nonlinear modelling capabilities of MLP neural networks using spread encoding. Fuzzy Sets and Systems, 79, 113-126.
    • (1996) Fuzzy Sets and Systems , vol.79 , pp. 113-126
    • Gomm, J.B.1    Williams, D.2    Evans, J.T.3    Doherty, S.K.4    Lisboa, P.J.G.5
  • 13
    • 0032048565 scopus 로고    scopus 로고
    • A software environment for gain scheduled controller design
    • Johansen, T. a., Hunt, K. J., and Fritz, H., 1998, A software environment for gain scheduled controller design. IEEE Control Systems, 18, 48-60.
    • (1998) IEEE Control Systems , vol.18 , pp. 48-60
    • Johansen, T.A.1    Hunt, K.J.2    Fritz, H.3
  • 14
    • 0023104537 scopus 로고
    • Model selection and validation methods for nonlinear systems
    • Leontaritis, I. J., and Billings, S. A., 1987, Model selection and validation methods for nonlinear systems. International Journal of Control, 45, 311-341.
    • (1987) International Journal of Control , vol.45 , pp. 311-341
    • Leontaritis, I.J.1    Billings, S.A.2
  • 17
    • 0002361761 scopus 로고
    • System Identification
    • Englewood Cliffs, New Jersey: Prentice-Hall)
    • Ljung, L., 1987, System Identification, Theory for the User (Englewood Cliffs, New Jersey: Prentice-Hall).
    • (1987) Theory for the User
    • Ljung, L.1
  • 18
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J., and Darken, C. J., 1989, Fast learning in networks of locally-tuned processing units. Neural Computation, 1, 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 19
    • 0000857773 scopus 로고
    • Identification of nonlinear processes using reciprocal multiquadric functions
    • Pottmann, M., and Seborg, D. E., 1992, Identification of nonlinear processes using reciprocal multiquadric functions. Journal of Process Control, 2, 189-203.
    • (1992) Journal of Process Control , vol.2 , pp. 189-203
    • Pottmann, M.1    Seborg, D.E.2
  • 20
    • 0031704654 scopus 로고    scopus 로고
    • Robust training algorithm of multilayered neural networks for identification of nonlinear dynamic systems
    • PtD
    • Song, Q., 1998, Robust training algorithm of multilayered neural networks for identification of nonlinear dynamic systems. Proceedings of the Institution of Electrical Engineers, PtD, 145, 41-46.
    • (1998) Proceedings of the Institution of Electrical Engineers , vol.145 , pp. 41-46
    • Song, Q.1
  • 21
    • 0011715014 scopus 로고    scopus 로고
    • Nonlinear pole-placement control with a neural network
    • Sorensen, O., 1996, Nonlinear pole-placement control with a neural network. European Journal of Control, 2, 36-43.
    • (1996) European Journal of Control , vol.2 , pp. 36-43
    • Sorensen, O.1
  • 22
    • 0032044157 scopus 로고    scopus 로고
    • Information theoretic subset selection for neural network models of chemical processes
    • Sridhar, D. V., Bartlett, E. B., and Seagrove, R. C., 1998, Information theoretic subset selection for neural network models of chemical processes. Computers and Chemical Engineering, 22, 613-626.
    • (1998) Computers and Chemical Engineering , vol.22 , pp. 613-626
    • Sridhar, D.V.1    Bartlett, E.B.2    Seagrove, R.C.3
  • 24
    • 0011713326 scopus 로고    scopus 로고
    • RBF network modelling of a multivariable chemical process with ROLS weight updating
    • Fukuoka, Japan, 1997
    • Yu, D. L., Gomm, J. B., and Williams, D., 1997, RBF network modelling of a multivariable chemical process with ROLS weight updating. Preprints of the 11th IFAC Symposium on System Identification, Vol. 2, Fukuoka, Japan, 1997, pp. 565-570.
    • (1997) Preprints of the 11Th IFAC Symposium on System Identification , vol.2 , pp. 565-570
    • Yu, D.L.1    Gomm, J.B.2    Williams, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.