-
1
-
-
0034341707
-
-
10.1103/RevModPhys.72.545
-
T. Brabec and F. Krausz, Rev. Mod. Phys. 10.1103/RevModPhys.72.545 72, 545 (2000).
-
(2000)
Rev. Mod. Phys.
, vol.72
, pp. 545
-
-
Brabec, T.1
Krausz, F.2
-
3
-
-
34247174373
-
-
10.1038/nphoton.2007.3.
-
M. Tonouchi, Nat. Photonics 1, 97 (2007) 10.1038/nphoton.2007.3.
-
(2007)
Nat. Photonics
, vol.1
, pp. 97
-
-
Tonouchi, M.1
-
5
-
-
37249040505
-
-
10.1103/PhysRevB.76.235114
-
N. N. Zinov'ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, Phys. Rev. B 10.1103/PhysRevB.76.235114 76, 235114 (2007).
-
(2007)
Phys. Rev. B
, vol.76
, pp. 235114
-
-
Zinov'Ev, N.N.1
Nikoghosyan, A.S.2
Dudley, R.A.3
Chamberlain, J.M.4
-
7
-
-
0000154413
-
-
10.1103/PhysRevB.53.4005
-
T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, Phys. Rev. B 10.1103/PhysRevB.53.4005 53, 4005 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 4005
-
-
Dekorsy, T.1
Auer, H.2
Bakker, H.J.3
Roskos, H.G.4
Kurz, H.5
-
8
-
-
0001559114
-
-
10.1103/PhysRev.101.1713
-
W. van Roosbroeck, Phys. Rev. 10.1103/PhysRev.101.1713 101, 1713 (1956).
-
(1956)
Phys. Rev.
, vol.101
, pp. 1713
-
-
Van Roosbroeck, W.1
-
9
-
-
3943070484
-
-
10.1103/PhysRev.107.374
-
J. R. Dixon, Phys. Rev. 10.1103/PhysRev.107.374 107, 374 (1957).
-
(1957)
Phys. Rev.
, vol.107
, pp. 374
-
-
Dixon, J.R.1
-
10
-
-
9544254874
-
-
10.1016/j.optcom.2004.08.021
-
K. J. Chau and A. Y. Elezzabi, Opt. Commun. 10.1016/j.optcom.2004.08.021 242, 295 (2004).
-
(2004)
Opt. Commun.
, vol.242
, pp. 295
-
-
Chau, K.J.1
Elezzabi, A.Y.2
-
11
-
-
84876943974
-
-
10.1103/PhysRevB.65.165301
-
M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Phys. Rev. B 10.1103/PhysRevB.65.165301 65, 165301 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165301
-
-
Johnston, M.B.1
Whittaker, D.M.2
Corchia, A.3
Davies, A.G.4
Linfield, E.H.5
-
13
-
-
0000167608
-
-
10.1063/1.92719
-
G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, Appl. Phys. Lett. 10.1063/1.92719 39, 295 (1981).
-
(1981)
Appl. Phys. Lett.
, vol.39
, pp. 295
-
-
Mourou, G.1
Stancampiano, C.V.2
Antonetti, A.3
Orszag, A.4
-
18
-
-
0033171352
-
-
10.1109/3.777228
-
S.-G. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, IEEE J. Quantum Electron. 10.1109/3.777228 35, 1257 (1999).
-
(1999)
IEEE J. Quantum Electron.
, vol.35
, pp. 1257
-
-
Park, S.-G.1
Weiner, A.M.2
Melloch, M.R.3
Siders, C.W.4
Siders, J.L.W.5
Taylor, A.J.6
-
20
-
-
0033892389
-
-
10.1143/JJAP.39.96
-
Z. Piao, M. Tani, and R. Sakai, Jpn. J. Appl. Phys., Part 1 10.1143/JJAP.39.96 39, 96 (2000).
-
(2000)
Jpn. J. Appl. Phys., Part 1
, vol.39
, pp. 96
-
-
Piao, Z.1
Tani, M.2
Sakai, R.3
-
21
-
-
0035424087
-
-
10.1063/1.1380414
-
H. Němec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnüull, and I. Wilke, J. Appl. Phys. 10.1063/1.1380414 90, 1303 (2001).
-
(2001)
J. Appl. Phys.
, vol.90
, pp. 1303
-
-
Němec, H.1
Pashkin, A.2
Kuzel, P.3
Khazan, M.4
Schnüull, S.5
Wilke, I.6
-
25
-
-
55849128765
-
-
Strictly speaking, the representation of external field as the second time derivative of an oscillating dipole is valid only for a fixed point dipole element. In fact, the treatments of terahertz emitters based on nonequilibrium carriers transport (ambipolar diffusion or drift) require the use of full set of Maxwell and transport equations with the correct set of boundary conditions. It is clear that replacement of this detailed analysis with a point dipole or current source is inadequate in the sense of quantitative analysis.
-
Strictly speaking, the representation of external field as the second time derivative of an oscillating dipole is valid only for a fixed point dipole element. In fact, the treatments of terahertz emitters based on nonequilibrium carriers transport (ambipolar diffusion or drift) require the use of full set of Maxwell and transport equations with the correct set of boundary conditions. It is clear that replacement of this detailed analysis with a point dipole or current source is inadequate in the sense of quantitative analysis.
-
-
-
-
27
-
-
9644279736
-
-
10.1103/PhysRev.150.619
-
H. J. Stocker and H. Kaplan, Phys. Rev. 10.1103/PhysRev.150.619 150, 619 (1966).
-
(1966)
Phys. Rev.
, vol.150
, pp. 619
-
-
Stocker, H.J.1
Kaplan, H.2
-
31
-
-
0037888455
-
-
10.1063/1.125082
-
C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, and A. C. Gossard, Appl. Phys. Lett. 10.1063/1.125082 75, 2575 (1999).
-
(1999)
Appl. Phys. Lett.
, vol.75
, pp. 2575
-
-
Kadow, C.1
Fleischer, S.B.2
Ibbetson, J.P.3
Bowers, J.E.4
Gossard, A.C.5
-
35
-
-
4243903844
-
-
10.1103/PhysRevB.63.085203
-
H. Ruda and A. Shik, Phys. Rev. B 10.1103/PhysRevB.63.085203 63, 085203 (2001).
-
(2001)
Phys. Rev. B
, vol.63
, pp. 085203
-
-
Ruda, H.1
Shik, A.2
-
37
-
-
0020193772
-
-
10.1063/1.331665
-
J. S. Blakemore, J. Appl. Phys. 10.1063/1.331665 53, R123 (1982).
-
(1982)
J. Appl. Phys.
, vol.53
, pp. 123
-
-
Blakemore, J.S.1
-
39
-
-
0016071759
-
-
10.1063/1.1663645
-
D. D. Sell, H. C. Casey, Jr., and K. W. Wecht, J. Appl. Phys. 10.1063/1.1663645 45, 2650 (1974).
-
(1974)
J. Appl. Phys.
, vol.45
, pp. 2650
-
-
Sell, D.D.1
Casey Jr., H.C.2
Wecht, K.W.3
-
40
-
-
36149016256
-
-
10.1103/PhysRev.120.37
-
H. R. Philipp and E. A. Taft, Phys. Rev. 10.1103/PhysRev.120.37 120, 37 (1960).
-
(1960)
Phys. Rev.
, vol.120
, pp. 37
-
-
Philipp, H.R.1
Taft, E.A.2
-
44
-
-
55849130604
-
-
In general case the total current is distinguished as polarization current associated with bound charges and conduction current related to motion of free charges. This distinction can strictly be made only for static fields and becomes meaningless for time-dependent high-frequency fields. Therefore, the expression for current can be written in two equivalent forms, J (ω) = (Iω) ε0 χ̂eff (ω) E (ω) and J (ω) = σ̂eff (ω) E (ω), where χ̂eff (ω) = χ̂ (ω) - I σ̂ (ω) ε0 ω, σ̂ eff (ω) = σ̂ (ω) +Iω ε0 χ̂ (ω), and σ̂ eff (ω) = (Iω) ε0 χ̂ eff (ω). High-frequency current J (ω) can be treated as transverse polarization charge wave in plasma with χ̂ eff (ω) = χ̂ (ω) - I σ̂ (ω) ε0 ω.
-
In general case the total current is distinguished as polarization current associated with bound charges and conduction current related to motion of free charges. This distinction can strictly be made only for static fields and becomes meaningless for time-dependent high-frequency fields. Therefore, the expression for current can be written in two equivalent forms, J (ω) = (Iω) ε0 χ̂ eff (ω) E (ω) and J (ω) = σ̂ eff (ω) E (ω), where χ̂ eff (ω) = χ̂ (ω) - I σ̂ (ω) ε0 ω, σ̂ eff (ω) = σ̂ (ω) +Iω ε0 χ̂ (ω), and σ̂ eff (ω) = (Iω) ε0 χ̂ eff (ω). High-frequency current J (ω) can be treated as transverse polarization charge wave in plasma with χ̂ eff (ω) = χ̂ (ω) - I σ̂ (ω) ε0 ω.
-
-
-
-
45
-
-
55849094596
-
-
g.
-
g.
-
-
-
|