메뉴 건너뛰기




Volumn 46, Issue 1, 2007, Pages 437-471

Finite element approximation of stochastic partial differential equations driven by poisson random measures of jump type

Author keywords

Numerical approximation; Poisson random measure; Space discretization; Stochastic evolution equations; Stochastic partial differential equations; Time discretization

Indexed keywords

COMPUTATIONAL FLUID DYNAMICS; DIFFERENTIAL EQUATIONS; IMAGE SEGMENTATION; PARTIAL DIFFERENTIAL EQUATIONS; POISSON DISTRIBUTION; POISSON EQUATION; RANDOM PROCESSES;

EID: 55549131924     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/050654141     Document Type: Article
Times cited : (30)

References (44)
  • 1
    • 0037606706 scopus 로고    scopus 로고
    • Finite element and difference approximation of some linear stochastic partial differential equations
    • E. J. ALLEN, S. J. NOVOSEL, AND Z. ZHANG, Finite element and difference approximation of some linear stochastic partial differential equations, Stoch. Stoch. Rep., 64 (1998), pp. 117-142.
    • (1998) Stoch. Stoch. Rep , vol.64 , pp. 117-142
    • ALLEN, E.J.1    NOVOSEL, S.J.2    ZHANG, Z.3
  • 2
    • 0013252179 scopus 로고    scopus 로고
    • Stochastic partial differential equations driven by Ĺevy space-time white noise, Random Oper
    • D. APPLEBAUM AND J.-L. WU, Stochastic partial differential equations driven by Ĺevy space-time white noise, Random Oper. Stochastic Equations, 8 (2000), pp. 245-259.
    • (2000) Stochastic Equations , vol.8 , pp. 245-259
    • APPLEBAUM, D.1    WU, J.-L.2
  • 3
    • 0003115242 scopus 로고    scopus 로고
    • Parabolic SPDEs driven by Poisson white noise
    • S. ALBEVERIO, J. WU, AND T. ZHANG, Parabolic SPDEs driven by Poisson white noise, Stochastic Process. Appl., 74 (1998), pp. 21-36.
    • (1998) Stochastic Process. Appl , vol.74 , pp. 21-36
    • ALBEVERIO, S.1    WU, J.2    ZHANG, T.3
  • 6
    • 4043072844 scopus 로고    scopus 로고
    • On strongly Petrovskiǐ's parabolic SPDEs in arbitrary dimension and application to the stochastic Cahn-Hilliard equation
    • C. CARDON-WEBER AND A. MILLET, On strongly Petrovskiǐ's parabolic SPDEs in arbitrary dimension and application to the stochastic Cahn-Hilliard equation, J. Theoret. Probab., 17 (2004), pp. 1-49.
    • (2004) J. Theoret. Probab , vol.17 , pp. 1-49
    • CARDON-WEBER, C.1    MILLET, A.2
  • 7
    • 55549146916 scopus 로고    scopus 로고
    • AL. ERN AND J. GUERMOND, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
    • AL. ERN AND J. GUERMOND, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
  • 9
    • 2442438946 scopus 로고    scopus 로고
    • The order of approximations for solutions of Itô-type stochastic differential equations with jumps
    • A. GARDÓN, The order of approximations for solutions of Itô-type stochastic differential equations with jumps, Stochastic Anal. Appl., 22 (2004), pp. 679-699.
    • (2004) Stochastic Anal. Appl , vol.22 , pp. 679-699
    • GARDÓN, A.1
  • 10
    • 0041725493 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I, Potential Anal., 9 (1998), pp. 1-25.
    • (1998) I, Potential Anal , vol.9 , pp. 1-25
    • GYÖNGY, I.1
  • 11
    • 0042078403 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal., 11 (1999), pp. 1-37.
    • (1999) II, Potential Anal , vol.11 , pp. 1-37
    • GYÖNGY, I.1
  • 12
    • 17144406851 scopus 로고    scopus 로고
    • On discretization schemes for stochastic evolution equations
    • I. GYÖNGY AND A. MILLET, On discretization schemes for stochastic evolution equations, Potential Anal., 23 (2005), pp. 99-134.
    • (2005) Potential Anal , vol.23 , pp. 99-134
    • GYÖNGY, I.1    MILLET, A.2
  • 13
    • 0038095778 scopus 로고
    • d by a finite-element technique
    • d by a finite-element technique, Stochastics, 23 (1988), pp. 131-148.
    • (1988) Stochastics , vol.23 , pp. 131-148
    • GERMANI, A.1    PICCIONI, M.2
  • 14
    • 0037107474 scopus 로고    scopus 로고
    • Numerical analysis of semilinear stochastic evolution equations in Banach spaces
    • E. HAUSENBLAS, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math., 147 (2002), pp. 485-516.
    • (2002) J. Comput. Appl. Math , vol.147 , pp. 485-516
    • HAUSENBLAS, E.1
  • 15
    • 0037209607 scopus 로고    scopus 로고
    • Approximation for semilinear stochastic evolution equations
    • E. HAUSENBLAS, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), pp. 141-186.
    • (2003) Potential Anal , vol.18 , pp. 141-186
    • HAUSENBLAS, E.1
  • 16
    • 29344475755 scopus 로고    scopus 로고
    • Existence, uniqueness, and regularity of parabolic SPDEs driven by Poisson random measure
    • E. HAUSENBLAS, Existence, uniqueness, and regularity of parabolic SPDEs driven by Poisson random measure, Electron. J. Probab., 10 (2005), pp. 1496-1546.
    • (2005) Electron. J. Probab , vol.10 , pp. 1496-1546
    • HAUSENBLAS, E.1
  • 17
    • 33846874124 scopus 로고    scopus 로고
    • SPDEs driven by Poisson random measure with non-Lipschitz coefficients
    • E. HAUSENBLAS, SPDEs driven by Poisson random measure with non-Lipschitz coefficients, Probab. Theory Related Fields, 137 (2007), pp. 161-200.
    • (2007) Probab. Theory Related Fields , vol.137 , pp. 161-200
    • HAUSENBLAS, E.1
  • 18
    • 33845298633 scopus 로고    scopus 로고
    • The numerical approximation of parabolic stochastic partial differential equations driven by Poisson random measure
    • E. HAUSENBLAS AND I. MARCHIS, The numerical approximation of parabolic stochastic partial differential equations driven by Poisson random measure, BIT, 46 (2006), pp. 773-811.
    • (2006) BIT , vol.46 , pp. 773-811
    • HAUSENBLAS, E.1    MARCHIS, I.2
  • 19
    • 55549148885 scopus 로고    scopus 로고
    • Numerical Simulations of Parabolic Stochastic Partial Differential Equations Driven by Poisson Random Measure
    • manuscript
    • E. HAUSENBLAS AND I. MARCHIS, Numerical Simulations of Parabolic Stochastic Partial Differential Equations Driven by Poisson Random Measure, manuscript, 2006.
    • (2006)
    • HAUSENBLAS, E.1    MARCHIS, I.2
  • 20
    • 0003304963 scopus 로고
    • Geometric Theory of Semilinear Parabolic Equations
    • Springer-Verlag, Berlin
    • D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, 1981.
    • (1981) Lecture Notes in Math , vol.840
    • HENRY, D.1
  • 21
    • 50249179593 scopus 로고
    • Diffusion approximation of nuclear space-valued stochastic-differential equations driven by Poisson random measures
    • G. KALLIANPUR AND J. XIONG, Diffusion approximation of nuclear space-valued stochastic-differential equations driven by Poisson random measures, Ann. Appl. Probab., 5 (1995), pp. 493-517.
    • (1995) Ann. Appl. Probab , vol.5 , pp. 493-517
    • KALLIANPUR, G.1    XIONG, J.2
  • 22
    • 0036389859 scopus 로고    scopus 로고
    • Convergence of Markov chain approximations to stochastic reaction-diffusion equations
    • M. KOURITZIN AND H. LONG, Convergence of Markov chain approximations to stochastic reaction-diffusion equations, Ann. Appl. Probab., 12 (2002), pp. 1039-1070.
    • (2002) Ann. Appl. Probab , vol.12 , pp. 1039-1070
    • KOURITZIN, M.1    LONG, H.2
  • 23
    • 0037278774 scopus 로고    scopus 로고
    • On Markov chain approximations to semilinear partial differential equations driven by Poisson measure noise
    • M. KOURITZIN, H. LONG, AND W. SUN, On Markov chain approximations to semilinear partial differential equations driven by Poisson measure noise, Stochastic Anal. Appl., 21 (2003), pp. 419-441.
    • (2003) Stochastic Anal. Appl , vol.21 , pp. 419-441
    • KOURITZIN, M.1    LONG, H.2    SUN, W.3
  • 24
    • 0012150629 scopus 로고    scopus 로고
    • Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs
    • P. E. KLOEDEN AND S. SHOTT, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs, J. Appl. Math. Stoch. Anal., 14 (2001), pp. 47-53.
    • (2001) J. Appl. Math. Stoch. Anal , vol.14 , pp. 47-53
    • KLOEDEN, P.E.1    SHOTT, S.2
  • 25
    • 55549090442 scopus 로고    scopus 로고
    • New representations of explicit one-step numerical methods for stochastic differential equations with a jump component
    • D. F. KUZNETSOV, New representations of explicit one-step numerical methods for stochastic differential equations with a jump component, Zh. Vychisl. Mat. Mat. Fiz., 41 (2001), pp. 922-937.
    • (2001) Zh. Vychisl. Mat. Mat. Fiz , vol.41 , pp. 922-937
    • KUZNETSOV, D.F.1
  • 26
    • 29344456275 scopus 로고
    • A nuclear space-valued stochastic differential equation driven by Poisson random measures
    • Stochastic Partial Differential Equations and Their Applications, Springer-Verlag, New York
    • G. KALLIANPUR AND J. XIONG, A nuclear space-valued stochastic differential equation driven by Poisson random measures, in Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control and Inform. Sci. 176, Springer-Verlag, New York, 1987, pp. 135-143.
    • (1987) Lecture Notes in Control and Inform. Sci , vol.176 , pp. 135-143
    • KALLIANPUR, G.1    XIONG, J.2
  • 27
    • 0040298616 scopus 로고    scopus 로고
    • Stochastic Differential Equations in Infinite Dimensional Spaces
    • Institute of Mathematical Statistics, Hayward, CA
    • G. KALLIANPUR AND J. XIONG, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes Monograph Series 26, Institute of Mathematical Statistics, Hayward, CA, 1996.
    • (1996) Lecture Notes Monograph Series , vol.26
    • KALLIANPUR, G.1    XIONG, J.2
  • 29
    • 20344379438 scopus 로고    scopus 로고
    • On implicit and explicit discretization schemes for parabolic SPDEs in any dimension
    • A. MILLET AND P. MORIEN, On implicit and explicit discretization schemes for parabolic SPDEs in any dimension, Stochastic Process. Appl., 115 (2005), pp. 1073-1106.
    • (2005) Stochastic Process. Appl , vol.115 , pp. 1073-1106
    • MILLET, A.1    MORIEN, P.2
  • 32
    • 4043170232 scopus 로고    scopus 로고
    • On the discretization in time of parabolic stochastic partial differential equations
    • J. PRINTEMS, On the discretization in time of parabolic stochastic partial differential equations, Monte Carlo Methods Appl., 7 (2001), pp. 359-368.
    • (2001) Monte Carlo Methods Appl , vol.7 , pp. 359-368
    • PRINTEMS, J.1
  • 33
    • 0035565493 scopus 로고    scopus 로고
    • On the discretization in time of parabolic stochastic partial differential equations
    • J. PRINTEMS, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 1055-1078.
    • (2001) M2AN Math. Model. Numer. Anal , vol.35 , pp. 1055-1078
    • PRINTEMS, J.1
  • 35
    • 0031514913 scopus 로고    scopus 로고
    • The Euler scheme for Ĺevy driven stochastic differential equations
    • P. PROTTER AND D. TALAY, The Euler scheme for Ĺevy driven stochastic differential equations, Ann. Probab., 25 (1997), pp. 393-423.
    • (1997) Ann. Probab , vol.25 , pp. 393-423
    • PROTTER, P.1    TALAY, D.2
  • 36
    • 0037290933 scopus 로고    scopus 로고
    • Numerical simulation of the solution of a stochastic differential equation driven by a Ĺevy process
    • S. RUBENTHALER, Numerical simulation of the solution of a stochastic differential equation driven by a Ĺevy process, Stochastic Process. Appl., 103 (2003), pp. 311-349.
    • (2003) Stochastic Process. Appl , vol.103 , pp. 311-349
    • RUBENTHALER, S.1
  • 38
    • 0040118502 scopus 로고    scopus 로고
    • ́Etude d'une EDPS conduite par un bruit Poissonnien. (Study of a stochastic partial differential equation driven by a Poisson noise)
    • E. ST. L. BÍE, ́Etude d'une EDPS conduite par un bruit Poissonnien. (Study of a stochastic partial differential equation driven by a Poisson noise), Probab. Theory Related Fields, 111 (1998), pp. 287-321.
    • (1998) Probab. Theory Related Fields , vol.111 , pp. 287-321
    • ST, E.1    BÍE, L.2
  • 39
    • 0032676044 scopus 로고    scopus 로고
    • Numerical methods for stochastic parabolic PDEs
    • T. SHARDLOW, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim., 20 (1999), pp. 121-145.
    • (1999) Numer. Funct. Anal. Optim , vol.20 , pp. 121-145
    • SHARDLOW, T.1
  • 40
    • 0000659593 scopus 로고
    • An introduction to stochastic partial differential equations
    • Ecole d'Et́e de Probabilit́es de Saint-Flour XIV, 1984, Springer-Verlag, New York
    • J. WALSH, An introduction to stochastic partial differential equations, in Ecole d'Et́e de Probabilit́es de Saint-Flour XIV - 1984, Lecture Notes in Math. 1180, Springer-Verlag, New York, 1986, pp. 265-437.
    • (1986) Lecture Notes in Math , vol.1180 , pp. 265-437
    • WALSH, J.1
  • 41
    • 21244455730 scopus 로고    scopus 로고
    • Finite element methods for parabolic stochastic PDE's
    • J. B. WALSH, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), pp. 1-43.
    • (2005) Potential Anal , vol.23 , pp. 1-43
    • WALSH, J.B.1
  • 43
    • 33747184742 scopus 로고    scopus 로고
    • Galerkin finite element methods for stochastic parabolic partial differential equations
    • Y. YAN, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), pp. 1363-1384.
    • (2005) SIAM J. Numer. Anal , vol.43 , pp. 1363-1384
    • YAN, Y.1
  • 44
    • 0034395433 scopus 로고    scopus 로고
    • 1 by a finite-difference method
    • 1 by a finite-difference method, Math. Comp., 69 (2000), pp. 653-666.
    • (2000) Math. Comp , vol.69 , pp. 653-666
    • YOO, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.