메뉴 건너뛰기




Volumn 7, Issue 3-4, 2001, Pages 359-368

On the discretization in time of parabolic stochastic partial differential equations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 4043170232     PISSN: 09299629     EISSN: 15693961     Source Type: Journal    
DOI: 10.1515/mcma.2001.7.3-4.359     Document Type: Article
Times cited : (11)

References (20)
  • 1
    • 0001159580 scopus 로고
    • Équations Stochastiques Du Type Navier Stokes
    • A. BENSOUSSAN and R. TEMAM, Équations stochastiques du type Navier Stokes, J. Funct. Anal. 13, 195-222 (1973).
    • (1973) J. Funct. Anal. , vol.13 , pp. 195-222
    • Bensoussan, A.1    Temam, R.2
  • 2
    • 84966207809 scopus 로고
    • On the discretization in Time of Semilinear Parabolic Equations with Nonsmooth Initial Data
    • M. CROUZEIX and V. THOMÉE, On the discretization in Time of Semilinear Parabolic Equations with Nonsmooth Initial Data, Math, of Comput. 49, 359-377 (1987).
    • (1987) Math, of Comput. , vol.49 , pp. 359-377
    • Crouzeix, M.1    Thomée, V.2
  • 4
    • 0001820696 scopus 로고
    • Stochastic Burgers equation with correlated noise
    • G. DA PRATO and D. GATAREK, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep. 52 (1-2), 29-41 (1995).
    • (1995) Stochastics Stochastics Rep. , vol.52 , Issue.1-2 , pp. 29-41
    • Prato, G.D.A.1    Gatarek, D.2
  • 6
    • 85033888032 scopus 로고    scopus 로고
    • to appear in Stochastic Processes and their Applications
    • I. GYÖNGY, On the Stochastic Burgers equation, to appear in Stochastic Processes and their Applications (1996).
    • (1996) On the Stochastic Burgers Equation
    • Gyöngy, I.1
  • 7
    • 0041725493 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. i
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. IL, Potential Anal. 11(1), 1-37 (1999
    • I. GYÖNGY, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I., Potential Anal. 9(1), 1-25 (1998). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. IL, Potential Anal. 11(1), 1-37 (1999).
    • (1998) Potential Anal. , vol.9 , Issue.1 , pp. 1-25
    • Gyöngy, I.1
  • 8
    • 0042732714 scopus 로고    scopus 로고
    • Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise
    • I. GYÖNGY and D. NUALART, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal. 7, 725-757 (1997).
    • (1997) Potential Anal. , vol.7 , pp. 725-757
    • Gyöngy, I.1    Nualart, D.2
  • 9
    • 0003335723 scopus 로고
    • Numerical solution of stochastic differential equations
    • Springer Verlag
    • P. E. KLOEDEN and E. PLATTEN, NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS, Applications of Mathematics 23, Springer Verlag, 1992.
    • (1992) Applications of Mathematics , vol.23
    • Kloeden, P.E.1    Platten, E.2
  • 10
    • 34250236571 scopus 로고
    • Stochastic Evolution Equations
    • N. KRYLOV, B.L. ROZOVSKII, Stochastic Evolution equations, J. Sov. Math. 16, 1233-1277 (1981).
    • (1981) J. Sov. Math. , vol.16 , pp. 1233-1277
    • Krylov, N.1    Rozovskii, B.L.2
  • 11
    • 0000532550 scopus 로고
    • Approximate integration of stochastic differential equations
    • MILSTEIN Weak approximation of solutions of systems of stochastic differential equations, Theor. Prob. Appl. 30 (1985), 750-766
    • MILSTEIN, Approximate integration of stochastic differential equations, Theor. Prob. Appl. 19 (1974), 557-562. Weak approximation of solutions of systems of stochastic differential equations, Theor. Prob. Appl. 30 (1985), 750-766.
    • (1974) Theor. Prob. Appl. , vol.19 , pp. 557-562
  • 12
    • 84966226768 scopus 로고
    • Semidiscretization in Time for Parabolic Problems
    • M.-N. LE ROUX, Semidiscretization in Time for Parabolic Problems, Math, of Comput. 33, 919-931 (1979).
    • (1979) Math, of Comput. , vol.33 , pp. 919-931
    • Roux, M.-N.L.E.1
  • 16
    • 0032676044 scopus 로고    scopus 로고
    • Numerical methods for stochastic parabolic PDEs
    • T. SHARDLOW, Numerical methods for stochastic parabolic PDEs, Numerical functional analysis and Optimization, 20 (1-2), 121-145 (1999).
    • (1999) Numerical Functional Analysis and Optimization , vol.20 , Issue.1-2 , pp. 121-145
    • Shardlow, T.1
  • 18
    • 0000124397 scopus 로고
    • Expansion of the global error for numerical schemes solving stochastic differential equations
    • D. TALAY and L. TUB ARO, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications, 8(4), 483-509 (1990).
    • (1990) Stochastic Analysis and Applications , vol.8 , Issue.4 , pp. 483-509
    • Talay, D.1    Tub Aro, L.2
  • 20
    • 0000659593 scopus 로고
    • An introduction to stochastic partial differential equations
    • J. B. WALSH, An introduction to stochastic partial differential equations, Lectures Notes in Mathematics 1180 (1986), 265-437.
    • (1986) Lectures Notes in Mathematics , vol.1180 , pp. 265-437
    • Walsh, J.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.