메뉴 건너뛰기




Volumn 6, Issue 5, 2008, Pages 961-979

Modeling nonlinear gene regulatory networks from time series gene expression data

Author keywords

Granger causality; Nonlinear vector autoregressive model; Regulatory network

Indexed keywords

DNA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MYC PROTEIN; PROTEIN P53;

EID: 54949116637     PISSN: 02197200     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219720008003746     Document Type: Article
Times cited : (21)

References (28)
  • 2
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim S, Imoto S, Miyano S, Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data, Biosystems 75:57-65, 2004.
    • (2004) Biosystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 3
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N, Inferring cellular networks using probabilistic graphical models, Science 303:799-805, 2004.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 4
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto S, Goto T, Miyano S, Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression, Pac Symp Biocomput 7:175-186, 2002.
    • (2002) Pac Symp Biocomput , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 5
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Tamada Y, Kim S, Bannai H, Imoto S, Tashiro K, Kuhara S, Miyano S, Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection, Bioinformatics 19:227-236, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 227-236
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 6
    • 1642403354 scopus 로고    scopus 로고
    • Identification of genetic networks
    • Xiong M, Li J, Fang X, Identification of genetic networks, Genetics 166:1037-1052, 2004.
    • (2004) Genetics , vol.166 , pp. 1037-1052
    • Xiong, M.1    Li, J.2    Fang, X.3
  • 7
    • 0033677274 scopus 로고    scopus 로고
    • Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function
    • Akutsu T, Miyano S, Kuhara S, Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function, J Comput Biol 7:331-343, 2000.
    • (2000) J Comput Biol , vol.7 , pp. 331-343
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 8
    • 16344368806 scopus 로고    scopus 로고
    • Intervention in context-sensitive probabilistic Boolean networks
    • Pal R, Datta A, Bittner ML, Dougherty ER, Intervention in context-sensitive probabilistic Boolean networks, Bioinformatics 21:1211-1218, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 1211-1218
    • Pal, R.1    Datta, A.2    Bittner, M.L.3    Dougherty, E.R.4
  • 9
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • Shmulevich I, Dougherty ER, Mang W, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics 18 1319-13317, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 1319-13317
    • Shmulevich, I.1    Dougherty, E.R.2    Mang, W.3
  • 10
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J, Strimmer K, An empirical Bayes approach to inferring large-scale gene association networks, Bioinformatics 21 754-764, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 11
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analyzing gene expression data
    • Woolf PJ, Wang Y, A fuzzy logic approach to analyzing gene expression data, Physiol Genomics 3:9-15, 2000.
    • (2000) Physiol Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 12
    • 0028844979 scopus 로고
    • A mathematical framework for describing and analyzing gene regulatory networks
    • Mestl T, Plahte E, Omholt SW, A mathematical framework for describing and analyzing gene regulatory networks, J Theor Biol 176 291-300, 1995.
    • (1995) J Theor Biol , vol.176 , pp. 291-300
    • Mestl, T.1    Plahte, E.2    Omholt, S.W.3
  • 13
    • 85032779470 scopus 로고    scopus 로고
    • Finding module-based gene networks in time-course gene expression data with state space models
    • Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S, Finding module-based gene networks in time-course gene expression data with state space models, JEEE Signal Process Mag 24:37-46, 2007.
    • (2007) JEEE Signal Process Mag , vol.24 , pp. 37-46
    • Yamaguchi, R.1    Yoshida, R.2    Imoto, S.3    Higuchi, T.4    Miyano, S.5
  • 15
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    • Sanguinetti G, Lawrence ND, Rattray M, Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities, Bioinformatics 22:27775 2781, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 27775-32781
    • Sanguinetti, G.1    Lawrence, N.D.2    Rattray, M.3
  • 16
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • Mukhopadhyay ND, Chatterjee S, Causality and pathway search in microarray time series experiment, Bioinformatics 23 412-449, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 412-449
    • Mukhopadhyay, N.D.1    Chatterjee, S.2
  • 17
    • 34547852213 scopus 로고    scopus 로고
    • Time-vaxying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method
    • Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE, Time-vaxying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method, Bioinformatics 23:1623-1630, 2007.
    • (2007) Bioinformatics , vol.23 , pp. 1623-1630
    • Fujita, A.1    Sato, J.R.2    Garay-Malpartida, H.M.3    Morettin, P.A.4    Sogayar, M.C.5    Ferreira, C.E.6
  • 19
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • Granger CWJ, Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37:424-438, 1969.
    • (1969) Econometrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 21
    • 54949090234 scopus 로고    scopus 로고
    • available at
    • The R Project for Statistical Computing, available at http://r-project.org/.
  • 23
    • 0000861053 scopus 로고
    • A non-parametric test of independence
    • Hoeffding W, A non-parametric test of independence. Annals Math Stat 19:546-557, 1948.
    • (1948) Annals Math Stat , vol.19 , pp. 546-557
    • Hoeffding, W.1
  • 24
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J R Stat Soc Ser B Stat Methodol 57:289-300, 1995.
    • (1995) J R Stat Soc Ser B Stat Methodol , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 25
    • 0035211073 scopus 로고    scopus 로고
    • The p53 functional circuit
    • Jin S, Levine AJ, The p53 functional circuit, J Cell Sci 114 4139-4140, 2001.
    • (2001) J Cell Sci , vol.114 , pp. 4139-4140
    • Jin, S.1    Levine, A.J.2
  • 26
    • 0032192140 scopus 로고    scopus 로고
    • The complexity of p53 modulation: Emerging patterns from divergent signals
    • Giaccia AJ, Kastan MB, The complexity of p53 modulation: Emerging patterns from divergent signals, Genes Dev 12:2973-2983, 1998.
    • (1998) Genes Dev , vol.12 , pp. 2973-2983
    • Giaccia, A.J.1    Kastan, M.B.2
  • 28
    • 0035374609 scopus 로고    scopus 로고
    • The hunting of the Src
    • Martin GS, The hunting of the Src, Nat Rev Mol Cell Biol 2 467-475, 2001.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , pp. 467-475
    • Martin, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.