메뉴 건너뛰기




Volumn 3, Issue 9, 2008, Pages

On evaluating MHC-II binding peptide prediction methods

Author keywords

[No Author keywords available]

Indexed keywords

EPITOPE; MHC BINDING PEPTIDE; OLIGOPEPTIDE; PEPTIDE; UNCLASSIFIED DRUG;

EID: 54749148319     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0003268     Document Type: Article
Times cited : (43)

References (42)
  • 3
    • 0028943275 scopus 로고
    • The three-dimensional structure of peptide-MHC complexes
    • Madden D (1995) The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 13: 587-622.
    • (1995) Annu Rev Immunol , vol.13 , pp. 587-622
    • Madden, D.1
  • 4
    • 0036137241 scopus 로고    scopus 로고
    • ProPred: Prediction of HLA-DR binding sites
    • Singh H, Raghava G (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17: 1236-1237.
    • (2001) Bioinformatics , vol.17 , pp. 1236-1237
    • Singh, H.1    Raghava, G.2
  • 5
    • 5444249860 scopus 로고    scopus 로고
    • Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles
    • Reche P, Glutting J, Zhang H, Reinherz E (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56: 405-419.
    • (2004) Immunogenetics , vol.56 , pp. 405-419
    • Reche, P.1    Glutting, J.2    Zhang, H.3    Reinherz, E.4
  • 6
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and II epitopes using a novel Gibbs sampling approach
    • Nielsen M, Lundegaard C, Worning P, Sylvester-Hvid C, Lamberth K, et al. (2004) Improved prediction of MHC class I and II epitopes using a novel Gibbs sampling approach. Bioinformatics 20: 1388-97.
    • (2004) Bioinformatics , vol.20 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Sylvester-Hvid, C.4    Lamberth, K.5
  • 7
    • 34547778364 scopus 로고    scopus 로고
    • Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
    • Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8: 238.
    • (2007) BMC Bioinformatics , vol.8 , pp. 238
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3
  • 8
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
    • Rajapakse M, Schmidt B, Feng L, Brusic V (2007) Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 8: 459.
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 9
    • 0032387825 scopus 로고    scopus 로고
    • Predicting peptides that bind to MHC molecules using supervised learning of Hidden Markov Models
    • Mamitsuka H (1998) Predicting peptides that bind to MHC molecules using supervised learning of Hidden Markov Models. Proteins 33: 460-474.
    • (1998) Proteins , vol.33 , pp. 460-474
    • Mamitsuka, H.1
  • 10
    • 0036399733 scopus 로고    scopus 로고
    • Hidden Markov Model-based prediction of antigenic peptides that interact with MHC class II molecules
    • Noguchi H, Kato R, Hanai T, Matsubara Y, Honda H, et al. (2002) Hidden Markov Model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng 94: 264-270.
    • (2002) J Biosci Bioeng , vol.94 , pp. 264-270
    • Noguchi, H.1    Kato, R.2    Hanai, T.3    Matsubara, Y.4    Honda, H.5
  • 11
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • Nielsen M, Lundegaard C, Worning P, Lauemøller S, Lamberth K, et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007-1017.
    • (2003) Protein Sci , vol.12 , pp. 1007-1017
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Lauemøller, S.4    Lamberth, K.5
  • 12
    • 10744222046 scopus 로고    scopus 로고
    • Sensitive quantitative predictions of peptide-MHC binding by a query by committee artificial neural network approach
    • Buus S, Lauemoller S, Worning P, Kesmir C, Frimurer T, et al. (2003) Sensitive quantitative predictions of peptide-MHC binding by a query by committee artificial neural network approach. Tissue Antigens 62: 378-384.
    • (2003) Tissue Antigens , vol.62 , pp. 378-384
    • Buus, S.1    Lauemoller, S.2    Worning, P.3    Kesmir, C.4    Frimurer, T.5
  • 13
    • 20444386168 scopus 로고    scopus 로고
    • Predictive Bayesian neural network models of MHC class II peptide binding
    • Burden F, Winkler D (2006) Predictive Bayesian neural network models of MHC class II peptide binding. J Mol Graph Model 2005: 481-9.
    • (2006) J Mol Graph Model 2005 , pp. 481-489
    • Burden, F.1    Winkler, D.2
  • 14
    • 33747839161 scopus 로고    scopus 로고
    • SVMHC: A server for prediction of MHC-binding peptides
    • Donnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-binding peptides. Nucleic Acids Res 34: W194.
    • (2006) Nucleic Acids Res , vol.34
    • Donnes, P.1    Kohlbacher, O.2
  • 15
    • 1342288007 scopus 로고    scopus 로고
    • SVM based method for predicting HLA-DRB1* 0401 binding peptides in an antigen sequence
    • Bhasin M, Raghava G (2004) SVM based method for predicting HLA-DRB1* 0401 binding peptides in an antigen sequence. Bioinformatics 20: 421-423.
    • (2004) Bioinformatics , vol.20 , pp. 421-423
    • Bhasin, M.1    Raghava, G.2
  • 16
    • 33748792816 scopus 로고    scopus 로고
    • Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties
    • Cui J, Han L, Lin H, Zhang H, Tang Z, et al. (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol 44: 866-877.
    • (2007) Mol Immunol , vol.44 , pp. 866-877
    • Cui, J.1    Han, L.2    Lin, H.3    Zhang, H.4    Tang, Z.5
  • 17
    • 33845240573 scopus 로고    scopus 로고
    • Predicting Class II MHC-Peptide binding: A kernel based approach using similarity scores
    • Salomon J, Flower D (2006) Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics 7: 501.
    • (2006) BMC Bioinformatics , vol.7 , pp. 501
    • Salomon, J.1    Flower, D.2
  • 18
    • 33750990098 scopus 로고    scopus 로고
    • Prediction of MHC class II binding peptides based on an iterative learning model
    • Murugan N, Dai Y (2005) Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Res 1: 6.
    • (2005) Immunome Res , vol.1 , pp. 6
    • Murugan, N.1    Dai, Y.2
  • 19
    • 33947372576 scopus 로고    scopus 로고
    • PepDist: A new framework for protein-peptide binding prediction based on learning peptide distance functions
    • Hertz T, Yanover C (2006) PepDist: A new framework for protein-peptide binding prediction based on learning peptide distance functions. BMC Bioinformatics 7: S3.
    • (2006) BMC Bioinformatics , vol.7
    • Hertz, T.1    Yanover, C.2
  • 21
    • 0031811850 scopus 로고    scopus 로고
    • Brusic V, Rudy G, Harrison L, Journals O. MHCPEP a database of MHC-binding peptides: update 1997. Nucleic Acids Res 26: 368-371.
    • Brusic V, Rudy G, Harrison L, Journals O. MHCPEP a database of MHC-binding peptides: update 1997. Nucleic Acids Res 26: 368-371.
  • 22
    • 0037461027 scopus 로고    scopus 로고
    • MHCBN: A comprehensive database of MHC binding and non-binding peptides
    • Bhasin M, Singh H, Raghava G (2003) MHCBN: a comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19: 665-666.
    • (2003) Bioinformatics , vol.19 , pp. 665-666
    • Bhasin, M.1    Singh, H.2    Raghava, G.3
  • 23
    • 20944447214 scopus 로고    scopus 로고
    • The Immune Epitope Database and Analysis Resource: From Vision to Blueprint
    • Peters B, Sidney J, Bourne P, Bui H, Buus S, et al. (2005) The Immune Epitope Database and Analysis Resource: From Vision to Blueprint. PLoS Biology 3: e91.
    • (2005) PLoS Biology , vol.3
    • Peters, B.1    Sidney, J.2    Bourne, P.3    Bui, H.4    Buus, S.5
  • 26
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16: 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5
  • 27
    • 0001837148 scopus 로고
    • A Comparison of alternative tests of significance for the problem of m rankings
    • Friedman M (1940) A Comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11: 86-92.
    • (1940) Ann Math Stat , vol.11 , pp. 86-92
    • Friedman, M.1
  • 29
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1-30.
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 30
    • 42949139524 scopus 로고    scopus 로고
    • A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach
    • Wang P, Sidney J, Dow C, Mothé B, Sette A, et al. (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4.
    • (2008) PLoS Comput Biol , vol.4
    • Wang, P.1    Sidney, J.2    Dow, C.3    Mothé, B.4    Sette, A.5
  • 31
    • 0041833388 scopus 로고    scopus 로고
    • A consensus strategy for combining HLA-DR binding algorithms
    • Mallios R (2003) A consensus strategy for combining HLA-DR binding algorithms. Hum Immunol 64: 852-856.
    • (2003) Hum Immunol , vol.64 , pp. 852-856
    • Mallios, R.1
  • 32
    • 38649118833 scopus 로고    scopus 로고
    • In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion
    • Gowthaman U, Agrewala J (2008) In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion. J Proteome Res 7: 154-63.
    • (2008) J Proteome Res , vol.7 , pp. 154-163
    • Gowthaman, U.1    Agrewala, J.2
  • 33
    • 33847710294 scopus 로고    scopus 로고
    • Prediction of supertype-specific HLA class I binding peptides using support vector machines
    • Zhang G, Bozic I, Kwoh C, August J, Brusic V (2007) Prediction of supertype-specific HLA class I binding peptides using support vector machines. J Immunol Methods 320: 143-54.
    • (2007) J Immunol Methods , vol.320 , pp. 143-154
    • Zhang, G.1    Bozic, I.2    Kwoh, C.3    August, J.4    Brusic, V.5
  • 35
    • 0033957834 scopus 로고    scopus 로고
    • The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    • Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28: 45-48.
    • (2000) Nucleic Acids Res , vol.28 , pp. 45-48
    • Bairoch, A.1    Apweiler, R.2
  • 39
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence
    • Cai C, Han L, Ji Z, Chen X, Chen Y (2003) SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31: 3692-3697.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3692-3697
    • Cai, C.1    Han, L.2    Ji, Z.3    Chen, X.4    Chen, Y.5
  • 40
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo H, Vert J, Ueda N, Akutsu T (2004) Protein homology detection using string alignment kernels. Bioinformatics 20: 1682-1689.
    • (2004) Bioinformatics , vol.20 , pp. 1682-1689
    • Saigo, H.1    Vert, J.2    Ueda, N.3    Akutsu, T.4
  • 42
    • 2442682027 scopus 로고    scopus 로고
    • Protein structure and fold prediction using tree-augmented naive Bayesian classifier
    • Chinnasamy A, Sung W, Mittal A (2004) Protein structure and fold prediction using tree-augmented naive Bayesian classifier. Pac Symp Biocomput. pp 387-398.
    • (2004) Pac Symp Biocomput , pp. 387-398
    • Chinnasamy, A.1    Sung, W.2    Mittal, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.