-
1
-
-
0035802125
-
-
For reviews, see: a
-
For reviews, see: a) R. Thomas, ChemBioChem 2001, 2, 612-627;
-
(2001)
ChemBioChem
, vol.2
, pp. 612-627
-
-
Thomas, R.1
-
2
-
-
33846923183
-
-
b) C. Hertweck, A. Luzhetskyy, Y. Rebets, A. Bechthold, Nat. Prod. Rep. 2007, 24, 162-190;
-
(2007)
Nat. Prod. Rep
, vol.24
, pp. 162-190
-
-
Hertweck, C.1
Luzhetskyy, A.2
Rebets, Y.3
Bechthold, A.4
-
3
-
-
0036774667
-
-
c) U. Rix, C. Fischer, L. L. Remsing, J. Rohr, Nat. Prod. Rep. 2002, 19, 542-580;
-
(2002)
Nat. Prod. Rep
, vol.19
, pp. 542-580
-
-
Rix, U.1
Fischer, C.2
Remsing, L.L.3
Rohr, J.4
-
7
-
-
0018427014
-
-
a) W. Weber, H. Zahner, J. Siebers, K. Schröder, A. Zeeck, Arch. Microbiol. 1979, 121, 111-116;
-
(1979)
Arch. Microbiol
, vol.121
, pp. 111-116
-
-
Weber, W.1
Zahner, H.2
Siebers, J.3
Schröder, K.4
Zeeck, A.5
-
8
-
-
0026651855
-
-
b) E. Egert, M. Noltemeyer, J. Siebers, J. Rohr, A. Zeeck, J. Antibiot. 1992, 45, 1190-1192;
-
(1992)
J. Antibiot
, vol.45
, pp. 1190-1192
-
-
Egert, E.1
Noltemeyer, M.2
Siebers, J.3
Rohr, J.4
Zeeck, A.5
-
10
-
-
0034609696
-
-
d) E. R. Rafanan, Jr., C. R. Hutchinson, B. Shen, Org. Lett. 2000, 2, 3225-3227.
-
(2000)
Org. Lett
, vol.2
, pp. 3225-3227
-
-
Rafanan Jr., E.R.1
Hutchinson, C.R.2
Shen, B.3
-
11
-
-
0037459877
-
-
a) J. W. Bode, Y. Hachisu, T. Matsuura, K. Suzuki, Tetrahedron Lett. 2003, 44, 3555-3558;
-
(2003)
Tetrahedron Lett
, vol.44
, pp. 3555-3558
-
-
Bode, J.W.1
Hachisu, Y.2
Matsuura, T.3
Suzuki, K.4
-
12
-
-
0041910878
-
-
b) T. Matsuura, J. W. Bode, Y. Hachisu, K. Suzuki, Synlett 2003, 1746-1748;
-
(2003)
Synlett
, pp. 1746-1748
-
-
Matsuura, T.1
Bode, J.W.2
Hachisu, Y.3
Suzuki, K.4
-
13
-
-
0038375618
-
-
c) Y. Hachisu, J. W. Bode, K. Suzuki, J. Am. Chem. Soc. 2003, 125, 8432-8433;
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 8432-8433
-
-
Hachisu, Y.1
Bode, J.W.2
Suzuki, K.3
-
14
-
-
33846316498
-
-
d) H. Takikawa, Y. Hachisu, J. W. Bode, K. Suzuki, Angew. Chem. 2006, 118, 3572-3574;
-
(2006)
Angew. Chem
, vol.118
, pp. 3572-3574
-
-
Takikawa, H.1
Hachisu, Y.2
Bode, J.W.3
Suzuki, K.4
-
15
-
-
33745722719
-
-
Angew. Chem. Int. Ed. 2006, 45, 3492-3494;
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 3492-3494
-
-
-
16
-
-
37549023538
-
-
e) K. Suzuki, H. Takikawa, Y. Hachisu, J. W. Bode, Angew. Chem. 2007, 119, 3316-3318;
-
(2007)
Angew. Chem
, vol.119
, pp. 3316-3318
-
-
Suzuki, K.1
Takikawa, H.2
Hachisu, Y.3
Bode, J.W.4
-
17
-
-
34250899206
-
-
Angew. Chem. Int. Ed. 2007, 46, 3252-3254.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 3252-3254
-
-
-
18
-
-
54749140529
-
-
To the best of our knwledge the only oxidative transformation of isoxazoles known is ozonolysis, which gives oxime ester derivatives through C4-C5 double-bond cleavage. See: a J. Meisenheimer, K. Weibezahn, Ber. Dtsch. Chem. Ges. 1921, 54, 3195-3206;
-
To the best of our knwledge the only oxidative transformation of isoxazoles known is ozonolysis, which gives oxime ester derivatives through C4-C5 double-bond cleavage. See: a) J. Meisenheimer, K. Weibezahn, Ber. Dtsch. Chem. Ges. 1921, 54, 3195-3206;
-
-
-
-
22
-
-
0023618387
-
-
c) P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, D. Simoni, Synthesis 1987, 857-869;
-
(1987)
Synthesis
, pp. 857-869
-
-
Baraldi, P.G.1
Barco, A.2
Benetti, S.3
Pollini, G.P.4
Simoni, D.5
-
23
-
-
57249093610
-
-
d) A. I. Kotyatkina, V. N. Zhabinsky, V. A. Khripach, Russ. Chem. Rev. 2001, 70, 641-653.
-
(2001)
Russ. Chem. Rev
, vol.70
, pp. 641-653
-
-
Kotyatkina, A.I.1
Zhabinsky, V.N.2
Khripach, V.A.3
-
24
-
-
54749154836
-
-
4) failed to react with 3,5-diphenylisoxazole (3e).
-
4) failed to react with 3,5-diphenylisoxazole (3e).
-
-
-
-
25
-
-
0000873466
-
-
a) G. Stork, S. Danishefsky, M. Ohashi, J. Am. Chem. Soc. 1967, 89, 5459-5460;
-
(1967)
J. Am. Chem. Soc
, vol.89
, pp. 5459-5460
-
-
Stork, G.1
Danishefsky, S.2
Ohashi, M.3
-
26
-
-
84986519492
-
-
b) A. Alberola, A. M. Gonzalez, M. A. Laguna, F. J. Pulido, Synthesis 1984, 510-512;
-
(1984)
Synthesis
, pp. 510-512
-
-
Alberola, A.1
Gonzalez, A.M.2
Laguna, M.A.3
Pulido, F.J.4
-
27
-
-
0344857386
-
-
c) D. A. Becker, F. E. Anderson III, B. P. McKibben, J. S. Merola, T. E. Glass, Synlett 1993, 866-868;
-
(1993)
Synlett
, pp. 866-868
-
-
Becker, D.A.1
Anderson III, F.E.2
McKibben, B.P.3
Merola, J.S.4
Glass, T.E.5
-
28
-
-
54749139339
-
-
reference [6b] and references therein.
-
d) reference [6b] and references therein.
-
-
-
-
29
-
-
0000626006
-
-
For the two-step α-hydroxylation of ketones via silyl enol ethers (Rubottom oxidation)and its applications to β-dicarbonyl compounds, see: a) G. M. Rubottom, M. A. Vazquez, D. R. Pelegrina, Tetrahedron Lett. 1974, 15, 4319-4322;
-
For the two-step α-hydroxylation of ketones via silyl enol ethers (Rubottom oxidation)and its applications to β-dicarbonyl compounds, see: a) G. M. Rubottom, M. A. Vazquez, D. R. Pelegrina, Tetrahedron Lett. 1974, 15, 4319-4322;
-
-
-
-
30
-
-
0022002689
-
-
b) R. Z. Andriamialisoa, N. Langlois, Y. Langlois, J. Org. Chem. 1985, 50, 961-967;
-
(1985)
J. Org. Chem
, vol.50
, pp. 961-967
-
-
Andriamialisoa, R.Z.1
Langlois, N.2
Langlois, Y.3
-
31
-
-
0000043883
-
-
c) R. Z. Andriamialisoa, N. Langlois, Y. Langlois, Tetrahedron Lett. 1985, 26, 3563-3566.
-
(1985)
Tetrahedron Lett
, vol.26
, pp. 3563-3566
-
-
Andriamialisoa, R.Z.1
Langlois, N.2
Langlois, Y.3
-
32
-
-
1942535162
-
-
and references therein
-
J. Christoffers, A. Baro, T. Werner, Adv. Synth. Catal. 2004, 346, 143-151, and references therein.
-
(2004)
Adv. Synth. Catal
, vol.346
, pp. 143-151
-
-
Christoffers, J.1
Baro, A.2
Werner, T.3
-
36
-
-
54749114495
-
-
2]/tBuOOH, dimethyldioxirane) were tested. Although the ROOH/base system led to complete consumption of the substrates, no hydroxylated product 5a was obtained.
-
2]/tBuOOH, dimethyldioxirane) were tested. Although the ROOH/base system led to complete consumption of the substrates, no hydroxylated product 5a was obtained.
-
-
-
-
37
-
-
33947490338
-
-
For nucleophilic epoxidation by NaOCl, see: a
-
For nucleophilic epoxidation by NaOCl, see: a) S. Marmor, J. Org. Chem. 1963, 28, 250-251;
-
(1963)
J. Org. Chem
, vol.28
, pp. 250-251
-
-
Marmor, S.1
-
38
-
-
0019983436
-
-
b) A. A. Jakubowski, F. S. Guziec, Jr., M. Sugiura, C. C. Tam, M. Tishler, S. Omura, J. Org. Chem. 1982, 47, 1221-1228;
-
(1982)
J. Org. Chem
, vol.47
, pp. 1221-1228
-
-
Jakubowski, A.A.1
Guziec Jr., F.S.2
Sugiura, M.3
Tam, C.C.4
Tishler, M.5
Omura, S.6
-
39
-
-
0000450920
-
-
c) T. Ohta, H. Tsuchiyama, S. Nozoe, Heterocycles 1986, 24, 1137-1143;
-
(1986)
Heterocycles
, vol.24
, pp. 1137-1143
-
-
Ohta, T.1
Tsuchiyama, H.2
Nozoe, S.3
-
40
-
-
0029790961
-
-
d) T. E. Kedar, M. W. Miller, L. S. Hegedus, J. Org. Chem. 1996, 61, 6121-6126.
-
(1996)
J. Org. Chem
, vol.61
, pp. 6121-6126
-
-
Kedar, T.E.1
Miller, M.W.2
Hegedus, L.S.3
-
41
-
-
0032191496
-
-
For the oxidation of secondary alcohols with NaOCl, see
-
For the oxidation of secondary alcohols with NaOCl, see: G. A. Mirafzal, A. M. Lozeva, Tetrahedron Lett. 1998, 39, 7263-7266.
-
(1998)
Tetrahedron Lett
, vol.39
, pp. 7263-7266
-
-
Mirafzal, G.A.1
Lozeva, A.M.2
-
42
-
-
54749104319
-
-
Direct assessment of the ee value of isoxazolium salt 7a was not possible. Instead, the ee value was assessed after oxidation to form 8a and conversion of this product into the bis(trimethylsilyl) derivative (trimethylsilyl trifluoromethanesulfonate, 2,6-lutidine, N,N-dimethylformamide (DMF), RT, 97%). See the Supporting Information.
-
Direct assessment of the ee value of isoxazolium salt 7a was not possible. Instead, the ee value was assessed after oxidation to form 8a and conversion of this product into the bis(trimethylsilyl) derivative (trimethylsilyl trifluoromethanesulfonate, 2,6-lutidine, N,N-dimethylformamide (DMF), RT, 97%). See the Supporting Information.
-
-
-
-
43
-
-
54749135885
-
-
4 (for example, 60% ee in THF, 40°C, 12 h). See reference [4e].
-
4 (for example, 60% ee in THF, 40°C, 12 h). See reference [4e].
-
-
-
-
44
-
-
54749130439
-
-
The following scheme shows a possible mechanism for the formation of phthalimide 9: (Chemical Equation Presented)
-
The following scheme shows a possible mechanism for the formation of phthalimide 9: (Chemical Equation Presented)
-
-
-
-
45
-
-
54749088384
-
-
Upon treatment with 1M NaOH (1 equiv; 0.1M THF, 0°C), diol 8a decomposed to give carboxylic acid 10 in 41% yield.
-
Upon treatment with 1M NaOH (1 equiv; 0.1M THF, 0°C), diol 8a decomposed to give carboxylic acid 10 in 41% yield.
-
-
-
-
46
-
-
8544251150
-
-
While the active species, OCl is abundant at higher pH values, HOCl and Cl2 begin to prevail at pH values below 10. Indeed, no hydroxylated product 8a was obtained at pH 7.0 (data not shown, For the pH-dependent composition of aq NaOCl, see: a) J. C. Morris, J. Phys. Chem. 1966, 70, 3798-3805;
-
2 begin to prevail at pH values below 10. Indeed, no hydroxylated product 8a was obtained at pH 7.0 (data not shown). For the pH-dependent composition of aq NaOCl, see: a) J. C. Morris, J. Phys. Chem. 1966, 70, 3798-3805;
-
-
-
-
47
-
-
0038121141
-
-
Ed, L. A. Paquette, Wiley, New York
-
b) J. M. Glavin, E. N. Jacobsen in Encyclopedia of Reagents for Organic Synthesis, Vol. 7 (Ed.: L. A. Paquette), Wiley, New York, 1995, pp. 4580-4585;
-
(1995)
Encyclopedia of Reagents for Organic Synthesis
, vol.7
, pp. 4580-4585
-
-
Glavin, J.M.1
Jacobsen, E.N.2
-
48
-
-
0000547558
-
-
c) S. Banfi, F. Montanari, S. Quici, J. Org. Chem. 1989, 54, 1850-1859.
-
(1989)
J. Org. Chem
, vol.54
, pp. 1850-1859
-
-
Banfi, S.1
Montanari, F.2
Quici, S.3
-
49
-
-
54749099265
-
-
2O.
-
2O.
-
-
-
-
50
-
-
54749138108
-
-
Upon acid treatment (0.5M HCl, THF, 0°C), epoxide 11 was smoothly hydrolyzed to give diol 8a.
-
Upon acid treatment (0.5M HCl, THF, 0°C), epoxide 11 was smoothly hydrolyzed to give diol 8a.
-
-
-
-
51
-
-
54749138917
-
-
The position of chlorination was confirmed by X-ray analysis of the chlorinated product. See the Supporting Information
-
The position of chlorination was confirmed by X-ray analysis of the chlorinated product. See the Supporting Information.
-
-
-
-
52
-
-
54749122104
-
-
Other solvents (THF, DMF, acetone)for the hydrolysis gave mixtures of 8e and unidentified byproducts.
-
Other solvents (THF, DMF, acetone)for the hydrolysis gave mixtures of 8e and unidentified byproducts.
-
-
-
|