메뉴 건너뛰기




Volumn 19, Issue 5, 2005, Pages 701-713

Conjugate and natural gradient rules for byy harmony learning on Gaussian mixture with automated model selection

Author keywords

Automated model selection; Bayesian Ying Yang learning; Conjugate gradient; Gaussian mixture; Natural gradient

Indexed keywords

COMPUTER SIMULATION; HARMONIC ANALYSIS; LEARNING ALGORITHMS; MATHEMATICAL MODELS;

EID: 23944438437     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001405004228     Document Type: Article
Times cited : (22)

References (20)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Contr. AC-19 (1974) 716-723.
    • (1974) IEEE Trans. Autom. Contr. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • N. E. Day, Estimating the components of a mixture of normal distributions, Biometrika 56 (1969) 463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 5
    • 34247969087 scopus 로고
    • On some invariant criteria, for grouping data
    • H. P. Friedman and J. Rubin, On some invariant criteria, for grouping data, J. Amer. Stat. Assoc. 62 (1967) 1159-1178.
    • (1967) J. Amer. Stat. Assoc. , vol.62 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 7
    • 0001781043 scopus 로고
    • Distribution problems in clustering
    • ed. J. Van Ryzin (Academic Press, NY)
    • J. A. Hartigan, Distribution problems in clustering, Classification and Clustering, ed. J. Van Ryzin (Academic Press, NY, 1977), pp. 45-72.
    • (1977) Classification and Clustering , pp. 45-72
    • Hartigan, J.A.1
  • 9
    • 33645436216 scopus 로고    scopus 로고
    • An adaptive BYY harmony learning algorithm and its relation to rewarding and penalizing competitive learning mechanism
    • J. Ma, T. Wang and L. Xu, An adaptive BYY harmony learning algorithm and its relation to rewarding and penalizing competitive learning mechanism, in Proc. ICSP'02 2 (2002) 1154-1158.
    • (2002) Proc. ICSP'02 , vol.2 , pp. 1154-1158
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 10
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • J. Ma, T. Wang and L. Xu, A gradient BYY harmony learning rule on Gaussian mixture with automated model selection, Neurocomputing 56 (2004) 481-487.
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 11
    • 0001332786 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. W. Millgan and M. C. Copper, An examination of procedures for determining the number of clusters in a data set, Psychometrika 46 (1985) 187-199.
    • (1985) Psychometrika , vol.46 , pp. 187-199
    • Millgan, G.W.1    Copper, M.C.2
  • 12
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R. A. Render and H. F. Walker, Mixture densities, maximum likelihood and the EM algorithm, SIAM Rev. 26 (1984) 195-239.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Render, R.A.1    Walker, H.F.2
  • 13
    • 0033899728 scopus 로고    scopus 로고
    • Maximum certainty data partitioning
    • S. J. Robert, R. Everson and I. Rezek, Maximum certainty data partitioning, Patt. Recogn. 33 (2000) 833-839.
    • (2000) Patt. Recogn. , vol.33 , pp. 833-839
    • Robert, S.J.1    Everson, R.2    Rezek, I.3
  • 14
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • A. J. Scott and M. J. Symons, Clustering methods based on likelihood ratio criteria, Biometrics 27 (1971) 387-397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 15
    • 0036469527 scopus 로고    scopus 로고
    • A greedy em algorithm for Gaussian mixture learning
    • N. Vlassis and A. Likas, A greedy EM algorithm for Gaussian mixture learning, Neural Process. Lett. 15 (2002) 77-87.
    • (2002) Neural Process. Lett. , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 16
    • 0005906827 scopus 로고
    • Ying-Yang machine: A Bayesian-Kullback scheme for unified learnings and new results on vector quantization
    • L. Xu, Ying-Yang machine: A Bayesian-Kullback scheme for unified learnings and new results on vector quantization, Proc. 1995 Int. Conf. Neural Information Processing (ICONIP'95) 2 (1995), pp. 977-988.
    • (1995) Proc. 1995 Int. Conf. Neural Information Processing (ICONIP'95) , vol.2 , pp. 977-988
    • Xu, L.1
  • 17
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models
    • L. Xu, Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models, Int. J. Neural Syst. 11 (2001) 43-69.
    • (2001) Int. J. Neural Syst. , vol.11 , pp. 43-69
    • Xu, L.1
  • 18
  • 19
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organzing on mixture modes
    • L. Xu, BYY harmony learning, structural RPCL, and topological self-organzing on mixture modes, Neural Networks 15 (2002) 1231-1237.
    • (2002) Neural Networks , vol.15 , pp. 1231-1237
    • Xu, L.1
  • 20
    • 0242657969 scopus 로고    scopus 로고
    • Competitive em algorithm for finite mixture model
    • B. Zhang, C. Zhang and X. Yi, Competitive EM algorithm for finite mixture model, Patt. Recogn. 37 (2004) 131-144.
    • (2004) Patt. Recogn. , vol.37 , pp. 131-144
    • Zhang, B.1    Zhang, C.2    Yi, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.