메뉴 건너뛰기




Volumn 104, Issue 7, 2008, Pages

Operating lifetime recovery in organic light-emitting diodes having an azaaromatic hole-blocking/electron-transporting layer

Author keywords

[No Author keywords available]

Indexed keywords

ALUMINA; AROMATIC HYDROCARBONS; DOPING (ADDITIVES); ELECTROMAGNETIC WAVES; HUMAN REHABILITATION ENGINEERING; HYDROCARBONS; LIGHT EMISSION; LIGHT EMITTING DIODES; LITHIUM; LUMINESCENCE; METAL RECOVERY; ORGANIC COMPOUNDS; POLYCYCLIC AROMATIC HYDROCARBONS;

EID: 54049136037     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.2976326     Document Type: Article
Times cited : (13)

References (38)
  • 1
    • 8544278942 scopus 로고    scopus 로고
    • 0897-4756 10.1021/cm040081o.
    • H. Aziz and Z. D. Popovic, Chem. Mater. 0897-4756 10.1021/cm040081o 16, 4522 (2004).
    • (2004) Chem. Mater. , vol.16 , pp. 4522
    • Aziz, H.1    Popovic, Z.D.2
  • 3
    • 33847754274 scopus 로고    scopus 로고
    • 0021-8979 10.1063/1.2430922, ();, J. Appl. Phys. (to be published).
    • D. Y. Kondakov, W. C. Lenhart, and W. F. Nichols, J. Appl. Phys. 0021-8979 10.1063/1.2430922 101, 024512 (2007); D. Y. Kondakov, J. Appl. Phys. (to be published).
    • (2007) J. Appl. Phys. , vol.101 , pp. 024512
    • Kondakov, D.Y.1    Lenhart, W.C.2    Nichols, W.F.3    Kondakov, D.Y.4
  • 5
    • 12444335750 scopus 로고    scopus 로고
    • 0959-9428 10.1039/b413249c.
    • G. Hughes and M. R. Bryce, J. Mater. Chem. 0959-9428 10.1039/b413249c 15, 94 (2005).
    • (2005) J. Mater. Chem. , vol.15 , pp. 94
    • Hughes, G.1    Bryce, M.R.2
  • 14
    • 0032045175 scopus 로고    scopus 로고
    • 0010-8545 10.1016/S0010-8545(98)00022-8.
    • C. H. Chen and J. Shi, Coord. Chem. Rev. 0010-8545 10.1016/S0010-8545(98) 00022-8 171, 161 (1998).
    • (1998) Coord. Chem. Rev. , vol.171 , pp. 161
    • Chen, C.H.1    Shi, J.2
  • 18
    • 45749087698 scopus 로고    scopus 로고
    • 0003-6951 10.1063/1.2939099,. Also, the ionization potential of TBADN measured by UPS in-situ is 5.66 vs. 5.74 eV for Alq. That of NPB is 5.39 eV.
    • V. V. Jarikov, Appl. Phys. Lett. 0003-6951 10.1063/1.2939099 92, 244103 (2008). Also, the ionization potential of TBADN measured by UPS in-situ is 5.66 vs. 5.74 eV for Alq. That of NPB is 5.39 eV.
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 244103
    • Jarikov, V.V.1
  • 19
  • 20
    • 0031372263 scopus 로고    scopus 로고
    • 0379-6779 10.1016/S0379-6779(97)04009-5.
    • M. Matsumura and Y. Jinde, Synth. Met. 0379-6779 10.1016/S0379-6779(97) 04009-5 91, 197 (1997).
    • (1997) Synth. Met. , vol.91 , pp. 197
    • Matsumura, M.1    Jinde, Y.2
  • 25
    • 54049094155 scopus 로고    scopus 로고
    • U.S. Patent No. 7,138,763.
    • L. -S. Liao and K. P. Klubek, U.S. Patent No. 7,138,763 (2005).
    • (2005)
    • Liao, L.-S.1    Klubek, K.P.2
  • 31
    • 54049140535 scopus 로고    scopus 로고
    • U.S. Pat. Appl. No. 20040126617.
    • C. T. Brown and T. K. Hatwar, U.S. Pat. Appl. No. 20040126617 (2004).
    • (2004)
    • Brown, C.T.1    Hatwar, T.K.2
  • 33
    • 54049144421 scopus 로고    scopus 로고
    • (unpublished);, 0277-786X, ();, J. Appl. Phys. (to be published).
    • V. V. Jarikov and D. Y. Kondakov (unpublished); D. Y. Kondakov, Proc. SPIE 0277-786X 7051, 000 (2008); D. Y. Kondakov, J. Appl. Phys. (to be published).
    • (2008) Proc. SPIE , vol.7051 , pp. 000
    • Jarikov, V.V.1    Kondakov, D.Y.2    Kondakov, D.Y.3    Kondakov, D.Y.4
  • 34
    • 4043182063 scopus 로고    scopus 로고
    • 0031-8965 10.1002/pssa.200406830.
    • Y. Kim and W. B. Im, Phys. Status Solidi A 0031-8965 10.1002/pssa. 200406830 201, 2148 (2004).
    • (2004) Phys. Status Solidi A , vol.201 , pp. 2148
    • Kim, Y.1    Im, W.B.2
  • 35
    • 54049133034 scopus 로고    scopus 로고
    • For discussion of dopant stability see EPAPS Document No. E-JAPIAU-104-156817 at http://www.aiorg/publisher/epaps.html.
    • For discussion of dopant stability see EPAPS Document No. E-JAPIAU-104-156817 at http://www.aip.org/publisher/epaps.html.
  • 36
    • 54049116436 scopus 로고    scopus 로고
    • As noted above, the n -doping can increase the barrier for electrons, which now must transfer from the Fermi level of a semiconducting n -doped ETL to the LUMO level of an LEL. By the same token, however, the hole injection from LEL into the n -doped ETL becomes a very highly exothermic process as opposed to the highly endothermic process in the case of the undoped AAC HBETLs. In addition, no excited states are formed on the AAC molecules.
    • As noted above, the n -doping can increase the barrier for electrons, which now must transfer from the Fermi level of a semiconducting n -doped ETL to the LUMO level of an LEL. By the same token, however, the hole injection from LEL into the n -doped ETL becomes a very highly exothermic process as opposed to the highly endothermic process in the case of the undoped AAC HBETLs. In addition, no excited states are formed on the AAC molecules.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.