메뉴 건너뛰기




Volumn , Issue , 2006, Pages 275-292

An evaluation of methods for the selection of inputs for an artificial neural network based river model

Author keywords

[No Author keywords available]

Indexed keywords


EID: 54049092911     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/3-540-28426-5_13     Document Type: Chapter
Times cited : (5)

References (29)
  • 1
    • 84895234160 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology. II
    • (2000) Artificial Neural Networks in Hydrology. II
  • 2
    • 84895250717 scopus 로고    scopus 로고
    • BioComp Systems I. Redmond, WA
    • BioComp Systems, I. (1998) NeuroGenetic Optimizer (NGO). Redmond, WA.
    • (1998) NeuroGenetic Optimizer (NGO)
  • 4
    • 84895344994 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden GJ, Maier HR, Dandy GC (2000) Optimal division of data for neural network models in water resources applications. submitted to Water Resources Research.
    • (2000) Water Resources Research
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 6
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty K, Mehrotra K, Mohan CK, Ranka S (1992) Forecasting the behavior of multivariate time series using neural networks. Neural Networks, 5: 961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 7
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon TS, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using an artificial neural network. Ecological Modelling, 90: 69-78.
    • (1996) Ecological Modelling , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 8
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems, 2: 203-314.
    • (1989) Mathematics of Control Signals and Systems , vol.2 , pp. 203-314
    • Cybenko, G.1
  • 9
    • 0029776836 scopus 로고    scopus 로고
    • An improved genetic algorithm for pipe network optimisation
    • Dandy GC, Simpson AR, Murphy LJ (1996) An improved genetic algorithm for pipe network optimisation. Water Resources Research, 32(2): 449-458.
    • (1996) Water Resources Research , vol.32 , Issue.2 , pp. 449-458
    • Dandy, G.C.1    Simpson, A.R.2    Murphy, L.J.3
  • 10
    • 0032426253 scopus 로고    scopus 로고
    • Using evolutionary computation techniques in environmental modelling
    • Downing K (1998) Using evolutionary computation techniques in environmental modelling. Environmental Modelling & Software, 13(5-6): 519-528.
    • (1998) Environmental Modelling & Software , vol.13 , Issue.5-6 , pp. 519-528
    • Downing, K.1
  • 12
    • 0033578381 scopus 로고    scopus 로고
    • Applications of the self-organising feature map neural network in community data analysis
    • Foody GM (1999) Applications of the self-organising feature map neural network in community data analysis. Ecological Modelling, 120: 97-107.
    • (1999) Ecological Modelling , vol.120 , pp. 97-107
    • Foody, G.M.1
  • 14
    • 0029322281 scopus 로고
    • GA-P: A genetic algorithm and genetic programming hybrid
    • Howard LM, D'Angelo DJ (1995) GA-P: a genetic algorithm and genetic programming hybrid. IEEE Expert, 10(3): 11-15.
    • (1995) IEEE Expert , vol.10 , Issue.3 , pp. 11-15
    • Howard, L.M.1    D'Angelo, D.J.2
  • 15
    • 0034174352 scopus 로고    scopus 로고
    • Artificial neural networks in remote sensing of hydrologic processes
    • Islam S, Kothari R (2000) Artificial neural networks in remote sensing of hydrologic processes. Journal of Hydrologic Engineering, 5(2): 138-144.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 138-144
    • Islam, S.1    Kothari, R.2
  • 17
    • 7444265318 scopus 로고    scopus 로고
    • Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997
    • Kaski S, Kangas J, Kohonen T (1998) Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neural Computing Surveys, 1: 102-350.
    • (1998) Neural Computing Surveys , vol.1 , pp. 102-350
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 18
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43: 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 19
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T (1990) The Self-Organizing Map. Proc. IEEE, 78(9): 1464-1480.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 20
    • 0001006264 scopus 로고
    • Backpropagation in hydrological time series forecasting
    • K. W. Hipel, A. I. McLeod, U. S. Panu, and V. P. Singh (Eds) Kluwer Academic Publishers, Dordrecht
    • Lachtermacher G, Fuller JD (1994) Backpropagation in hydrological time series forecasting. In K. W. Hipel, A. I. McLeod, U. S. Panu, and V. P. Singh (Eds), Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Kluwer Academic Publishers, Dordrecht, pp. 229-242.
    • (1994) Stochastic and Statistical Methods in Hydrology and Environmental Engineering , pp. 229-242
    • Lachtermacher, G.1    Fuller, J.D.2
  • 21
    • 0031222587 scopus 로고    scopus 로고
    • Determining inputs for neural network models of multivariate time series
    • Maier HR, Dandy GC (1997) Determining inputs for neural network models of multivariate time series. Microcomputers in Civil Engineering, 12(5): 353-368.
    • (1997) Microcomputers in Civil Engineering , vol.12 , Issue.5 , pp. 353-368
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 0001728122 scopus 로고    scopus 로고
    • Application of artificial neural networks to forecasting of surface water quality variables: Issues applications and challenges
    • R. S. Govindaraju and A. R. Rao (Eds) Kluwer Academic Publishers
    • Maier HR, Dandy GC (2000a) Application of Artificial Neural Networks to Forecasting of Surface Water Quality Variables: Issues Applications and Challenges. In R. S. Govindaraju and A. R. Rao (Eds), Artificial Neural Networks in Hydrology, Kluwer Academic Publishers pp.-348.
    • (2000) Artificial Neural Networks in Hydrology , pp. 348
    • Maier, H.R.1    Dandy, G.C.2
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier HR, Dandy GC (2000b) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15: 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0031933254 scopus 로고    scopus 로고
    • Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia
    • Maier HR, Dandy GC, Burch MD (1998) Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecological Modelling, 105: 257-272.
    • (1998) Ecological Modelling , vol.105 , pp. 257-272
    • Maier, H.R.1    Dandy, G.C.2    Burch, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.