메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages 241-245

New evolutionary bankruptcy forecasting model based on genetic algorithms and neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BANKRUPTCY FORECASTING; NEURAL NETWORK CLASSIFIER;

EID: 33845890773     PISSN: 10823409     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICTAI.2005.92     Document Type: Conference Paper
Times cited : (13)

References (14)
  • 1
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • JULY
    • F. A. Atiya. Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Transactions on Neural Networks, 12(4), JULY 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4
    • Atiya, F.A.1
  • 5
    • 0007036356 scopus 로고
    • Z scores: A guide to failure prediction
    • February
    • G. Eidleman. Z scores: a guide to failure prediction. The CPA Journal New York, 65:52-61, February 1995.
    • (1995) The CPA Journal New York , vol.65 , pp. 52-61
    • Eidleman, G.1
  • 7
    • 0041370142 scopus 로고    scopus 로고
    • Test of the generalizability of altman's bankruptcy prediction model
    • J. S. Grice and R. W. Ingram. Test of the generalizability of altman's bankruptcy prediction model. Journal of Business Research, 54:53-61, 2001.
    • (2001) Journal of Business Research , vol.54 , pp. 53-61
    • Grice, J.S.1    Ingram, R.W.2
  • 8
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural networks models for bankruptcy prediction
    • K. C. Lee, I. Han, and Y. Kwon. Hybrid neural networks models for bankruptcy prediction. Decision Support System, 18:63-62, 1996.
    • (1996) Decision Support System , vol.18 , pp. 63-162
    • Lee, K.C.1    Han, I.2    Kwon, Y.3
  • 10
    • 0004449990 scopus 로고    scopus 로고
    • Predicting bankruptcy using recursive partitioning and a realistically proportioned datasets
    • T. E. McKee and M. Greenstein. Predicting bankruptcy using recursive partitioning and a realistically proportioned datasets. Journal of Forecasting, 19:219-230, 2000.
    • (2000) Journal of Forecasting , vol.19 , pp. 219-230
    • McKee, T.E.1    Greenstein, M.2
  • 11
    • 0038232428 scopus 로고    scopus 로고
    • An empirical study of design and testing of hybrid evolutionnary- Neural approach for classification
    • April
    • P. C. Pendhrkar. An empirical study of design and testing of hybrid evolutionnary- neural approach for classification. The International journal of Management Science, 29:361-374, April 2001.
    • (2001) The International Journal of Management Science , vol.29 , pp. 361-374
    • Pendhrkar, P.C.1
  • 12
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K. S. Shin, T. S. Lee, and H. J. Kim. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28:127-135, 2005.
    • (2005) Expert Systems with Applications , vol.28 , pp. 127-135
    • Shin, K.S.1    Lee, T.S.2    Kim, H.J.3
  • 13
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • K. S. Shin and Y. Lee. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 2002.
    • (2002) Expert Systems with Applications
    • Shin, K.S.1    Lee, Y.2
  • 14
    • 0005902282 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • The university of texas Department of CS, June
    • K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Tecnical report trai-01-290. The university of texas Department of CS, June 2001.
    • (2001) Tecnical Report , vol.TRAI-01-290
    • Stanley, K.O.1    Miikkulainen, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.