-
2
-
-
37049109357
-
-
b) M. S. J. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc. Dalton Trans. 1977, 2004;
-
(2004)
J. Chem. Soc. Dalton Trans
, vol.1977
-
-
Gynane, M.S.J.1
Harris, D.H.2
Lappert, M.F.3
Power, P.P.4
Rivière, P.5
Rivière-Baudet, M.6
-
3
-
-
37049099411
-
-
c) T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power, A. J. Thorne, J. Chem. Soc. Chem. Commun. 1983, 639;
-
(1983)
J. Chem. Soc. Chem. Commun
, pp. 639
-
-
Fjeldberg, T.1
Hope, H.2
Lappert, M.F.3
Power, P.P.4
Thorne, A.J.5
-
6
-
-
84909745427
-
-
b) B. Wrackmeyer, K. Horchler, H. Zhou, M. Veith, Z. Naturforsch. B 1989, 44, 288;
-
(1989)
Z. Naturforsch. B
, vol.44
, pp. 288
-
-
Wrackmeyer, B.1
Horchler, K.2
Zhou, H.3
Veith, M.4
-
7
-
-
0011441880
-
-
c) B. Wrackmeyer, C. Stader, K. Horchler, J. Magn. Reson. 1989, 83, 601.
-
(1989)
J. Magn. Reson
, vol.83
, pp. 601
-
-
Wrackmeyer, B.1
Stader, C.2
Horchler, K.3
-
8
-
-
0000999963
-
-
a) K. M. Barkigia, J. Fajer, A. D. Adler, G. J. B. Williams, Inorg. Chem. 1980, 19, 2057;
-
(1980)
Inorg. Chem
, vol.19
, pp. 2057
-
-
Barkigia, K.M.1
Fajer, J.2
Adler, A.D.3
Williams, G.J.B.4
-
9
-
-
0035582069
-
-
b) M. J. Plater, S. Aiken, T. Gelbrich, M. B. Hursthouse, G. Bourhill, Polyhedron 2001, 20, 3219;
-
(2001)
Polyhedron
, vol.20
, pp. 3219
-
-
Plater, M.J.1
Aiken, S.2
Gelbrich, T.3
Hursthouse, M.B.4
Bourhill, G.5
-
10
-
-
0042567340
-
-
c) P. M. Burnham, M. J. Cook, L. A. Gerrard, M. J. Heeney, D. L. Hughes, Chem. Commun. 2003, 2064;
-
(2003)
Chem. Commun
, pp. 2064
-
-
Burnham, P.M.1
Cook, M.J.2
Gerrard, L.A.3
Heeney, M.J.4
Hughes, D.L.5
-
11
-
-
8744301009
-
-
d) Y. Bian, L. Li, J. Dou, D. Y. Y. Cheng, R. Li, C. Ma, D. K. P. Ng, N. Kobayashi, J. Jiang, Inorg. Chem. 2004, 43, 7539.
-
(2004)
Inorg. Chem
, vol.43
, pp. 7539
-
-
Bian, Y.1
Li, L.2
Dou, J.3
Cheng, D.Y.Y.4
Li, R.5
Ma, C.6
Ng, D.K.P.7
Kobayashi, N.8
Jiang, J.9
-
12
-
-
17544383725
-
-
C. Stanciu, S. S. Hino, M. Stender, A. F. Richards, M. M. Olmstead, P. P. Power, Inorg. Chem. 2005, 44, 2774.
-
(2005)
Inorg. Chem
, vol.44
, pp. 2774
-
-
Stanciu, C.1
Hino, S.S.2
Stender, M.3
Richards, A.F.4
Olmstead, M.M.5
Power, P.P.6
-
13
-
-
22444435154
-
-
For a few recent examples of heteroleptic lead(II) amides bearing a pendant donor atom, see: a) A. Murso, M. Straka, M. Kaupp, R. Bertermann, D. Stalke, Organometallics 2005, 24, 3576;
-
For a few recent examples of heteroleptic lead(II) amides bearing a pendant donor atom, see: a) A. Murso, M. Straka, M. Kaupp, R. Bertermann, D. Stalke, Organometallics 2005, 24, 3576;
-
-
-
-
14
-
-
34248362335
-
-
b) M. Chen, J. R. Fulton, P. B. Hitchcock, N. C. Johnstone, M. F. Lappert, A. V. Protchenko, Dalton Trans. 2007, 2770.
-
(2007)
Dalton Trans
, pp. 2770
-
-
Chen, M.1
Fulton, J.R.2
Hitchcock, P.B.3
Johnstone, N.C.4
Lappert, M.F.5
Protchenko, A.V.6
-
15
-
-
33847086597
-
-
a) B. Cetinkaya, I. Gümrükcü, M. F. Lappert, J. L. Atwood, R. D. Rogers, M. J. Zaworotko, J. Am. Chem. Soc. 1980, 102, 2088;
-
(1980)
J. Am. Chem. Soc
, vol.102
, pp. 2088
-
-
Cetinkaya, B.1
Gümrükcü, I.2
Lappert, M.F.3
Atwood, J.L.4
Rogers, R.D.5
Zaworotko, M.J.6
-
16
-
-
37049106691
-
-
b) P. B. Hitchcock, M. F. Lappert, B. J. Samways, E. L. Weinberg, J. Chem. Soc. Chem. Commun. 1983, 1492;
-
(1983)
J. Chem. Soc. Chem. Commun
, pp. 1492
-
-
Hitchcock, P.B.1
Lappert, M.F.2
Samways, B.J.3
Weinberg, E.L.4
-
18
-
-
33745345089
-
-
d) R. Papiernik, L. G. Hubert-Pfalzgraf, M. Veith, V. Huch, Chem. Ber./Recl. 1997, 130, 1361.
-
(1997)
Chem. Ber./Recl
, vol.130
, pp. 1361
-
-
Papiernik, R.1
Hubert-Pfalzgraf, L.G.2
Veith, M.3
Huch, V.4
-
21
-
-
53549106197
-
-
b) C. Förster, K. W. Klinkhammer, B. Tumanskii, H. Krüger, H. Kelm, Angew. Chem. 2007, 119, 1174;
-
(2007)
Angew. Chem
, vol.119
, pp. 1174
-
-
Förster, C.1
Klinkhammer, K.W.2
Tumanskii, B.3
Krüger, H.4
Kelm, H.5
-
23
-
-
84984002948
-
-
a) M. Veith, M. Grosser, V. Huch, Z. Anorg. Allg. Chem. 1984, 513, 89;
-
(1984)
Z. Anorg. Allg. Chem
, vol.513
, pp. 89
-
-
Veith, M.1
Grosser, M.2
Huch, V.3
-
24
-
-
0032353760
-
-
b) B. Wrackmeyer, J. Weidinger, W. Milius, Z. Anorg. Allg. Chem. 1998, 624, 98;
-
(1998)
Z. Anorg. Allg. Chem
, vol.624
, pp. 98
-
-
Wrackmeyer, B.1
Weidinger, J.2
Milius, W.3
-
25
-
-
0039251810
-
-
c) B. Wrackmeyer, A. Pedall, J. Weidinger, Z. Naturforsch. B 2001, 56, 1009.
-
(2001)
Z. Naturforsch. B
, vol.56
, pp. 1009
-
-
Wrackmeyer, B.1
Pedall, A.2
Weidinger, J.3
-
26
-
-
25444445289
-
-
M. Veith, J. Frères, P. König, O. Schütt, V. Huch, J. Blin, Eur. J. Inorg. Chem. 2005, 3699.
-
(2005)
Eur. J. Inorg. Chem
, pp. 3699
-
-
Veith, M.1
Frères, J.2
König, P.3
Schütt, O.4
Huch, V.5
Blin, J.6
-
27
-
-
4544317399
-
-
For compounds featuring triple bonds to lead, see: a
-
For compounds featuring triple bonds to lead, see: a) A. C. Filippou, H. Rohde, G. Schnakenburg, Angew. Chem. 2004, 116, 2293;
-
(2004)
Angew. Chem
, vol.116
, pp. 2293
-
-
Filippou, A.C.1
Rohde, H.2
Schnakenburg, G.3
-
29
-
-
20444493539
-
-
b) A. C. Filippou, N. Weidemann, G. Schnakenburg, H. Rohde, A. I. Philippopoulos, Angew. Chem. 2004, 116, 6674;
-
(2004)
Angew. Chem
, vol.116
, pp. 6674
-
-
Filippou, A.C.1
Weidemann, N.2
Schnakenburg, G.3
Rohde, H.4
Philippopoulos, A.I.5
-
31
-
-
0034225935
-
-
L. Pu, B. Twamley, P. P. Power, Organometallics 2000, 19, 2874.
-
(2000)
Organometallics
, vol.19
, pp. 2874
-
-
Pu, L.1
Twamley, B.2
Power, P.P.3
-
32
-
-
53549117562
-
-
Yellow solutions of 1b in pentane or diethyl ether turn immediately cloudy and colorless upon exposure to air.
-
Yellow solutions of 1b in pentane or diethyl ether turn immediately cloudy and colorless upon exposure to air.
-
-
-
-
33
-
-
53549132088
-
-
12)) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.
-
12)) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.
-
-
-
-
34
-
-
53549123955
-
-
2 is the only other lead(II) dimethylamide presently known: M. M. Olmstead, P. P. Power, Inorg. Chem. 1984, 23, 413.
-
2 is the only other lead(II) dimethylamide presently known: M. M. Olmstead, P. P. Power, Inorg. Chem. 1984, 23, 413.
-
-
-
-
35
-
-
0344493839
-
-
Only two base-stabilized organolead(II) amides have been structurally characterized so far: a) W. Leung, Q. W. Ip, S. Yong, T. C. W. Mak, Organometallics 2003, 22, 4604;
-
Only two base-stabilized organolead(II) amides have been structurally characterized so far: a) W. Leung, Q. W. Ip, S. Yong, T. C. W. Mak, Organometallics 2003, 22, 4604;
-
-
-
-
36
-
-
33646356458
-
-
b) W. Leung, K. Wong, Z. Wang, T. C. W. Mak, Organometallics 2006, 25, 2037.
-
(2006)
Organometallics
, vol.25
, pp. 2037
-
-
Leung, W.1
Wong, K.2
Wang, Z.3
Mak, T.C.W.4
-
37
-
-
53549134537
-
-
The maximum deviation of the atoms N1, N2, Pb1, and Pb2 from the least-squares plane is 0.003(3) Å.
-
The maximum deviation of the atoms N1, N2, Pb1, and Pb2 from the least-squares plane is 0.003(3) Å.
-
-
-
-
39
-
-
0003732720
-
-
5th ed, Clarendon, Oxford
-
b) A. F. Wells, Structural Inorganic Chemistry, 5th ed., Clarendon, Oxford, 1984, p. 1288.
-
(1984)
Structural Inorganic Chemistry
, pp. 1288
-
-
Wells, A.F.1
-
41
-
-
0000013232
-
-
b) K. W. Klinkhammer, T. F. Fässler, H. Grützmacher, Angew. Chem. 1998, 110, 114;
-
(1998)
Angew. Chem
, vol.110
, pp. 114
-
-
Klinkhammer, K.W.1
Fässler, T.F.2
Grützmacher, H.3
-
43
-
-
0039025299
-
-
c) M. Stürmann, M. Weidenbruch, K. W. Klinkhammer, F. Lissner, H. Marsmann, Organometallics 1998, 17, 4425;
-
(1998)
Organometallics
, vol.17
, pp. 4425
-
-
Stürmann, M.1
Weidenbruch, M.2
Klinkhammer, K.W.3
Lissner, F.4
Marsmann, H.5
-
44
-
-
0000914194
-
-
d) M. Stürmann, W. Saak, H. Marsmann, M. Weidenbruch, Angew. Chem. 1999, 111, 145;
-
(1999)
Angew. Chem
, vol.111
, pp. 145
-
-
Stürmann, M.1
Saak, W.2
Marsmann, H.3
Weidenbruch, M.4
-
46
-
-
0032793503
-
-
e) M. Stürmann, W. Saak, M. Weidenbruch, K. W. Klinkhammer, Eur. J. Inorg. Chem. 1999, 579;
-
(1999)
Eur. J. Inorg. Chem
, pp. 579
-
-
Stürmann, M.1
Saak, W.2
Weidenbruch, M.3
Klinkhammer, K.W.4
-
47
-
-
0034639901
-
-
f) L. Pu, B. Twamley, P. P. Power, J. Am. Chem. Soc. 2000, 122, 3524;
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 3524
-
-
Pu, L.1
Twamley, B.2
Power, P.P.3
-
48
-
-
0042432085
-
-
g) F. Stabenow, W. Saak, H. Marsmann, M. Weidenbruch, J. Am. Chem. Soc. 2003, 125, 10172.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 10172
-
-
Stabenow, F.1
Saak, W.2
Marsmann, H.3
Weidenbruch, M.4
-
49
-
-
53549127940
-
-
The interplane angles between the amino groups (C37/N1/C38 and C75/N2/C76) and the Pb2N2 core of 80.1(4) and 81.9(3)°, respectively, lead to two different pairs of Pb-N-C angles (Pb1-N1-C37 107.3(3, Pb2-N2-C75 109.5(2)°; Pb1-N1-C38 113.4(2, Pb2-N2-C76 112.1(2)°, Thereby, short contacts result between the methyl hydrogen atoms at C37 and C75 and the center of gravity (Cg) of the peripheral phenyl rings C60-C65 and C22-C27, respectively (H(C37/C75)⋯Cg 2.64/2.65 Å, which may explain the considerable upfield 1H NMR shift of one of the signals of the N-bonded methyl groups (C(37/75)H 3: δ, 1.70 ppm, C(38/76)H3: δ, 4.17 ppm, Similarly, the terphenyl substituents are tilted, as evidenced by the dihedral angles of 71.9 and 73.6° between the Pb2N2 ring plane and the plane defined by the atoms Pb1/Pb2/C1 and Pb1/Pb2/C39, respectively
-
2 ring plane and the plane defined by the atoms Pb1/Pb2/C1 and Pb1/Pb2/C39, respectively.
-
-
-
-
50
-
-
53549114911
-
-
Dissociation of 1b in solution to form monomers should lead to exchange of the methyl positions through rapid rotation about the Pb-N bond.
-
Dissociation of 1b in solution to form monomers should lead to exchange of the methyl positions through rapid rotation about the Pb-N bond.
-
-
-
-
51
-
-
37049103102
-
-
a) V. C. Gibson, C. E. Graimann, P. M. Hare, M. L. H. Green, J. A. Bandy, P. D. Grebenik, K. Prout, J. Chem. Soc. Dalton Trans. 1985, 2025;
-
(1985)
J. Chem. Soc. Dalton Trans
, pp. 2025
-
-
Gibson, V.C.1
Graimann, C.E.2
Hare, P.M.3
Green, M.L.H.4
Bandy, J.A.5
Grebenik, P.D.6
Prout, K.7
-
52
-
-
37049069180
-
-
b) M. L. H. Green, G. Parkin, M. Chen, K. Prout, J. Chem. Soc. Dalton Trans. 1986, 2227;
-
(1986)
J. Chem. Soc. Dalton Trans
, pp. 2227
-
-
Green, M.L.H.1
Parkin, G.2
Chen, M.3
Prout, K.4
-
53
-
-
34347396190
-
-
c) A. C. Filippou, N. Weidemann, A. I. Philippopoulos, G. Schnakenburg, Angew. Chem. 2006, 118, 6133;
-
(2006)
Angew. Chem
, vol.118
, pp. 6133
-
-
Filippou, A.C.1
Weidemann, N.2
Philippopoulos, A.I.3
Schnakenburg, G.4
-
55
-
-
0000824915
-
-
E. Carmona, A. Galindo, M. L. Poveda, R. D. Rogers, Inorg. Chem. 1985, 24, 4033.
-
(1985)
Inorg. Chem
, vol.24
, pp. 4033
-
-
Carmona, E.1
Galindo, A.2
Poveda, M.L.3
Rogers, R.D.4
-
56
-
-
53549111738
-
-
The reaction pathways leading from 2 or 3 to complex 4a are presently unknown. A possible sequence of reaction steps involves metal coordination of 1b to give the aminoplumbylidene complex intermediate [WL(PMe3)4(Pb(R)NMe2, L, PMe3, N2, followed by rapid ligand dissociation and migration of the NMe2 group to the tungsten center to give the plumbylidyne complex intermediate [W(NMe2)(PMe3) 4PbR, which finally undergoes β-hydride elimination to give the final product. The latter intermediate is probably also formed in the reaction of 4b with LiNMe2 to give 4a
-
2 to give 4a.
-
-
-
-
57
-
-
53549098410
-
-
Complexes 4a-c have very similar structures. Thus, the m-terphenyl substituents always adopt an eclipsed conformation, as indicated by respective angles of 0.7(2, 5.4(2, and 6.3(1)° between the central aryl ring plane and the least-squares plane passing through the atoms Pb, W, P1, and P3. In addition, complex 4a shows a similar geometric distortion of the WP4 core to 4b and 4c, such that two trans-disposed PMe3 ligands (P2 and P4 in Figure 2) are pushed further away from the plumbylidyne ligand than the other two P1 and P3
-
3 ligands (P2 and P4 in Figure 2) are pushed further away from the plumbylidyne ligand than the other two (P1 and P3).
-
-
-
-
58
-
-
53549093988
-
-
3)] (X=H, Cl, I) and suggests that the strong π-bonding part of the W-E bond (E = Ge, Pb), which is not expected to be distinctly effected by the trans-disposed ligand X, has a major influence on the W-E triple bond length.
-
3)] (X=H, Cl, I) and suggests that the strong π-bonding part of the W-E bond (E = Ge, Pb), which is not expected to be distinctly effected by the trans-disposed ligand X, has a major influence on the W-E triple bond length.
-
-
-
-
59
-
-
0003162474
-
-
The W-H distance of 4a lies in the range of W-H bond lengths determined by neutron diffraction (1.71-1.78 Å): R. Bau, M. H. Drabnis, Inorg. Chim. Acta 1997, 259, 2 7.
-
The W-H distance of 4a lies in the range of W-H bond lengths determined by neutron diffraction (1.71-1.78 Å): R. Bau, M. H. Drabnis, Inorg. Chim. Acta 1997, 259, 2 7.
-
-
-
-
60
-
-
0000875892
-
-
F. Furno, T. Fox, H. W. Schmalle, H. Berke, Organometallics 2000, 19, 3620.
-
(2000)
Organometallics
, vol.19
, pp. 3620
-
-
Furno, F.1
Fox, T.2
Schmalle, H.W.3
Berke, H.4
-
61
-
-
53549109271
-
-
1H} NMR spectrum of 4a at room temperature.
-
1H} NMR spectrum of 4a at room temperature.
-
-
-
-
62
-
-
34347394386
-
-
a) G. Balázs, L. J. Gregoriades, M. Scheer, Organometallics 2007, 26, 3058;
-
(2007)
Organometallics
, vol.26
, pp. 3058
-
-
Balázs, G.1
Gregoriades, L.J.2
Scheer, M.3
|