-
4
-
-
0141581512
-
-
Ed, N. Krause, Wiley-VCH, Weinheim
-
c) B. L. Feringa, R. Naasz, R. Imbos, L. A. Arnold in Modern Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 224-258.
-
(2002)
Modern Organocopper Chemistry
, pp. 224-258
-
-
Feringa, B.L.1
Naasz, R.2
Imbos, R.3
Arnold, L.A.4
-
5
-
-
16844367372
-
-
For previous studies regarding catalytic ACA reactions that furnish all-carbon quaternary stereogenic centers, see: a J. Wu, D. M. Mampreian, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 4584-4585;
-
For previous studies regarding catalytic ACA reactions that furnish all-carbon quaternary stereogenic centers, see: a) J. Wu, D. M. Mampreian, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 4584-4585;
-
-
-
-
7
-
-
24944551844
-
-
c) M. d'Augustin, L. Palais, A. Alexakis, Angew. Chem. 2005, 117, 1400-1402;
-
(2005)
Angew. Chem
, vol.117
, pp. 1400-1402
-
-
d'Augustin, M.1
Palais, L.2
Alexakis, A.3
-
8
-
-
14844320728
-
-
Angew. Chem. Int. Ed. 2005, 44, 1376-1378;
-
(2005)
Angew. Chem. Int. Ed
, vol.44
, pp. 1376-1378
-
-
-
11
-
-
33646594410
-
-
f) R. Shintani, W.-L. Duan, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 5628-5629;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 5628-5629
-
-
Shintani, R.1
Duan, W.-L.2
Hayashi, T.3
-
12
-
-
33744926164
-
-
g) K-s. Lee, M. K. Brown, A. W. Hird, A. H. Hoveyda, J. Am. Chem. Soc. 2006, 128, 7182-7184;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 7182-7184
-
-
Lee, K.-S.1
Brown, M.K.2
Hird, A.W.3
Hoveyda, A.H.4
-
13
-
-
33745728242
-
-
h) D. Martin, S. Kehrli, M. d'Augustin, H. Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc. 2006, 128, 8416-8417;
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 8416-8417
-
-
Martin, D.1
Kehrli, S.2
d'Augustin, M.3
Clavier, H.4
Mauduit, M.5
Alexakis, A.6
-
14
-
-
45249088116
-
-
i) Y. Matsumoto, K-i. Yamada, K. Tomioka, J. Org. Chem. 2008, 73, 4578-4581;
-
(2008)
J. Org. Chem
, vol.73
, pp. 4578-4581
-
-
Matsumoto, Y.1
Yamada, K.-I.2
Tomioka, K.3
-
16
-
-
53249146823
-
-
Ref. [3b]; b M. K. Brown, T. L. May, C. A. Baxter, A. H. Hoveyda, Angew. Chem. 2007, 119, 1115-1118;
-
a) Ref. [3b]; b) M. K. Brown, T. L. May, C. A. Baxter, A. H. Hoveyda, Angew. Chem. 2007, 119, 1115-1118;
-
-
-
-
17
-
-
34247201978
-
-
Angew. Chem. Int. Ed. 2007, 46, 1097-1100.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 1097-1100
-
-
-
20
-
-
0034725069
-
-
Catalytic ACA reactions to cyclopentenones are more challenging than other classes of cyclic enones. For example, see: a I. H. Escher, A. Pfaltz, Tetrahedron 2000, 56, 2879-2888;
-
Catalytic ACA reactions to cyclopentenones are more challenging than other classes of cyclic enones. For example, see: a) I. H. Escher, A. Pfaltz, Tetrahedron 2000, 56, 2879-2888;
-
-
-
-
21
-
-
0035977640
-
-
b) S. J. Degrado, H. Mizutani, A. H. Hoveyda, J. Am. Chem. Soc. 2001, 123, 755-756;
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 755-756
-
-
Degrado, S.J.1
Mizutani, H.2
Hoveyda, A.H.3
-
22
-
-
0000578801
-
-
c) L. Liang, T. T.-L. Au-Yeung, A. S. C. Chan, Org. Lett. 2002, 4, 3799-3801.
-
(2002)
Org. Lett
, vol.4
, pp. 3799-3801
-
-
Liang, L.1
Au-Yeung, T.T.-L.2
Chan, A.S.C.3
-
23
-
-
53249139974
-
-
For catalytic ACA reactions with cyclic enones where reactions of cyclopentenones are either not discussed or reported to be highly inefficient, see: a Ref, 3c];
-
For catalytic ACA reactions with cyclic enones where reactions of cyclopentenones are either not discussed or reported to be highly inefficient, see: a) Ref. [3c];
-
-
-
-
24
-
-
53249128547
-
-
Ref, 3g];
-
b) Ref. [3g];
-
-
-
-
25
-
-
53249118711
-
-
Ref, 3h];
-
c) Ref. [3h];
-
-
-
-
26
-
-
53249139975
-
-
Ref, 3i
-
d) Ref. [3i].
-
-
-
-
27
-
-
0002753783
-
-
For representative examples of natural products bearing a β,β-disubstituted cyclopentanone or related derivatives, see: a
-
For representative examples of natural products bearing a β,β-disubstituted cyclopentanone or related derivatives, see: a) G. L. Chetty, S. Dev, Tetrahedron Lett. 1964, 5, 73-77;
-
(1964)
Tetrahedron Lett
, vol.5
, pp. 73-77
-
-
Chetty, G.L.1
Dev, S.2
-
28
-
-
0010540468
-
-
b) M. Segawa, N. Enoki, M. Ikura, K. Hikichi, R. Ishida, H. Shirahama, T. Matsumoto, Tetrahedron Lett. 1987, 28, 3703-3704;
-
(1987)
Tetrahedron Lett
, vol.28
, pp. 3703-3704
-
-
Segawa, M.1
Enoki, N.2
Ikura, M.3
Hikichi, K.4
Ishida, R.5
Shirahama, H.6
Matsumoto, T.7
-
29
-
-
0025892345
-
-
c) J. Su, Y. Zhong, K. Shi, Q. Cheng, J. K. Snyder, S. Hu, Y. Huang, J. Org. Chem. 1991, 56, 2337-2344;
-
(1991)
J. Org. Chem
, vol.56
, pp. 2337-2344
-
-
Su, J.1
Zhong, Y.2
Shi, K.3
Cheng, Q.4
Snyder, J.K.5
Hu, S.6
Huang, Y.7
-
30
-
-
0034620689
-
-
d) S. F. Brady, M. P. Singh, J. E. Janso, J. Clardy, J. Am. Chem. Soc. 2000, 122, 2116-2117.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 2116-2117
-
-
Brady, S.F.1
Singh, M.P.2
Janso, J.E.3
Clardy, J.4
-
31
-
-
4544235332
-
-
a) A. O. Larsen, W. Leu, C. Nieto-Oberhuber, J. E. Campbell, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126, 11130-11131;
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 11130-11131
-
-
Larsen, A.O.1
Leu, W.2
Nieto-Oberhuber, C.3
Campbell, J.E.4
Hoveyda, A.H.5
-
32
-
-
18644377613
-
-
b) J. J. Van Veldhuizen, J. E. Campbell, R. E. Giudici, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 6877-6882;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 6877-6882
-
-
Van Veldhuizen, J.J.1
Campbell, J.E.2
Giudici, R.E.3
Hoveyda, A.H.4
-
35
-
-
34250705242
-
-
Angew. Chem. Int. Ed. 2007, 46, 3860-3864;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 3860-3864
-
-
-
36
-
-
53249105049
-
-
Ref [3g];
-
e) Ref [3g];
-
-
-
-
37
-
-
53249085490
-
-
f) M. A. Kacprzynski, T. L. May, S. A. Kazane, A. H. Hoveyda, Angew. Chem. 2007, 119, 4638-4642;
-
(2007)
Angew. Chem
, vol.119
, pp. 4638-4642
-
-
Kacprzynski, M.A.1
May, T.L.2
Kazane, S.A.3
Hoveyda, A.H.4
-
38
-
-
34250704681
-
-
Angew. Chem. Int. Ed. 2007, 46, 4554-4558;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 4554-4558
-
-
-
39
-
-
40149087402
-
-
g) Y. Lee, K. Akiyama, D. G. Gillingham, M. K. Brown, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 446-447.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 446-447
-
-
Lee, Y.1
Akiyama, K.2
Gillingham, D.G.3
Brown, M.K.4
Hoveyda, A.H.5
-
40
-
-
46649113378
-
-
For a recent review on 1,2- and 1,4-additions with aluminum-based reagents, see
-
For a recent review on 1,2- and 1,4-additions with aluminum-based reagents, see: P. von Zezschwitz, Synthesis 2008, 1809-1831.
-
(2008)
Synthesis
, pp. 1809-1831
-
-
von Zezschwitz, P.1
-
41
-
-
53249099968
-
-
2 as it is commercially available and reaction outcomes promoted by this copper source tend to be completely reproducible. Further details will be provided in the full account of this work.
-
2 as it is commercially available and reaction outcomes promoted by this copper source tend to be completely reproducible. Further details will be provided in the full account of this work.
-
-
-
-
42
-
-
33845192384
-
-
3Al reagents, see: a) K.-H. Wu, H.-M. Gau, J. Am. Chem. Soc. 2006, 128, 14808-14809;
-
3Al reagents, see: a) K.-H. Wu, H.-M. Gau, J. Am. Chem. Soc. 2006, 128, 14808-14809;
-
-
-
-
43
-
-
38149136548
-
-
b) C.-A. Chen, K.-H. Wu, H.-M. Gau, Angew. Chem. 2007, 119, 5469-5472;
-
(2007)
Angew. Chem
, vol.119
, pp. 5469-5472
-
-
Chen, C.-A.1
Wu, K.-H.2
Gau, H.-M.3
-
44
-
-
34447545750
-
-
Angew. Chem. Int. Ed. 2007, 46, 5373-5376.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 5373-5376
-
-
-
45
-
-
0001069741
-
-
For previous reports regarding preparation of dialkyl aryl aluminum reagents, see: a
-
For previous reports regarding preparation of dialkyl aryl aluminum reagents, see: a) T. Belgardt, J. Storre, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, Inorg. Chem. 1995, 34, 3821-3822;
-
(1995)
Inorg. Chem
, vol.34
, pp. 3821-3822
-
-
Belgardt, T.1
Storre, J.2
Roesky, H.W.3
Noltemeyer, M.4
Schmidt, H.-G.5
-
46
-
-
0001287122
-
-
b) N. A. Bumagin, A. B. Ponomaryov, I. P. Beletskaya, Tetrahedron Lett. 1985, 26, 4819-4822;
-
(1985)
Tetrahedron Lett
, vol.26
, pp. 4819-4822
-
-
Bumagin, N.A.1
Ponomaryov, A.B.2
Beletskaya, I.P.3
-
47
-
-
17844395427
-
-
c) B. Z. Lu, F. Jin, Y. Zhang, X. Wu, S. A. Wald, C. H. Senanayake, Org. Lett. 2005, 7, 1465-1468.
-
(2005)
Org. Lett
, vol.7
, pp. 1465-1468
-
-
Lu, B.Z.1
Jin, F.2
Zhang, Y.3
Wu, X.4
Wald, S.A.5
Senanayake, C.H.6
-
48
-
-
53249083631
-
-
2(aryl)Al reagents, see: d) J. Siewert, R. Sandmann, P. von Zezschwitz, Angew. Chem. 2007, 119, 7252-7254;
-
2(aryl)Al reagents, see: d) J. Siewert, R. Sandmann, P. von Zezschwitz, Angew. Chem. 2007, 119, 7252-7254;
-
-
-
-
49
-
-
34848830797
-
-
Angew. Chem. Int. Ed. 2007, 46, 7122-7124.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 7122-7124
-
-
-
50
-
-
53249116824
-
-
The somewhat moderate yields for the reactions in Table 5, which are in spite of conversions greater than 98%, are partly due to difficulties associated with removal of biphenyl formed in the course of the transformation. Modified procedures that address this complication are under development.
-
The somewhat moderate yields for the reactions in Table 5, which are in spite of conversions greater than 98%, are partly due to difficulties associated with removal of biphenyl formed in the course of the transformation. Modified procedures that address this complication are under development.
-
-
-
-
51
-
-
53249107240
-
-
See the Supporting Information for additional details
-
See the Supporting Information for additional details.
-
-
-
-
52
-
-
53249091627
-
-
Control experiments involving filtered solutions of aryl aluminum reagents or those where excess LiCl is added to the mixture indicate that the presence of LiCl does not have any favorable or deleterious effects on the catalytic ACA reactions when chiral complex derived from 2 is used
-
Control experiments involving filtered solutions of aryl aluminum reagents or those where excess LiCl is added to the mixture indicate that the presence of LiCl does not have any favorable or deleterious effects on the catalytic ACA reactions when chiral complex derived from 2 is used.
-
-
-
-
53
-
-
53249097034
-
-
I complexes 4 and 5 are not yet commercially available but can be prepared on a multigram scale in six steps from commercially available tert-butoxycarbonylphenylglycinol (ca. 20% overall yield of isolated product). See the Supporting Information for experimental and spectral details. In our experience, the required sequences do not require any significant experimental expertise. It should be noted that NHC complex 3 has already been used in a key step at an early stage of a complex-molecule total synthesis: K. M. Peese, D. Y. Gin, Chem. Eur. J. 2007, 14, 1645-1665.
-
I complexes 4 and 5 are not yet commercially available but can be prepared on a multigram scale in six steps from commercially available tert-butoxycarbonylphenylglycinol (ca. 20% overall yield of isolated product). See the Supporting Information for experimental and spectral details. In our experience, the required sequences do not require any significant experimental expertise. It should be noted that NHC complex 3 has already been used in a key step at an early stage of a complex-molecule total synthesis: K. M. Peese, D. Y. Gin, Chem. Eur. J. 2007, 14, 1645-1665.
-
-
-
-
54
-
-
4644299863
-
-
For a general discussion regarding the significance of the ease of structural modification of chiral catalysts to achieving optimal results, see: A. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem. Commun. 2004, 1779-1785
-
For a general discussion regarding the significance of the ease of structural modification of chiral catalysts to achieving optimal results, see: A. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem. Commun. 2004, 1779-1785.
-
-
-
-
55
-
-
53249102807
-
-
Studies involving vinylaluminum reagents (derived from reaction of diisobutylaluminum hydride (dibal-H) with terminal alkynes; cf. Ref. [9g]) indicate that this class of reactions requires the development of more effective NHC-based catalyst systems.
-
Studies involving vinylaluminum reagents (derived from reaction of diisobutylaluminum hydride (dibal-H) with terminal alkynes; cf. Ref. [9g]) indicate that this class of reactions requires the development of more effective NHC-based catalyst systems.
-
-
-
|