-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.
-
(1963)
J. Atmos. Sci
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
52749092342
-
Chaotic chaos
-
Hill D.A. (2000). Chaotic chaos. Math. Intelligencer 22(3), 5.
-
(2000)
Math. Intelligencer
, vol.22
, Issue.3
, pp. 5
-
-
Hill, D.A.1
-
3
-
-
0034259697
-
What's new on Lorenz strange attractors?
-
Viana M. (2000). What's new on Lorenz strange attractors? Math. Intelligencer 22(3), 6-19.
-
(2000)
Math. Intelligencer
, vol.22
, Issue.3
, pp. 6-19
-
-
Viana, M.1
-
4
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
I, 617-656
-
Eckmann J-P. and Ruelle D. (1985). Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, No. 3, Part I, 617-656.
-
(1985)
Rev. Mod. Phys
, vol.57
, Issue.3 and PART
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
6
-
-
2142676841
-
Chaos for some infinite-dimensional dynamical systems
-
Rudnicki R. (2004). Chaos for some infinite-dimensional dynamical systems. Math. Meth. Appl. Sci. 27(6), 723-736.
-
(2004)
Math. Meth. Appl. Sci
, vol.27
, Issue.6
, pp. 723-736
-
-
Rudnicki, R.1
-
8
-
-
0001743171
-
On Devaney's definition of chaos
-
Banks J., Brooks J., Cairns G., Davis G. and Stacey P. (1992). On Devaney's definition of chaos. Amer. Math. Monthly 99, 332-334.
-
(1992)
Amer. Math. Monthly
, vol.99
, pp. 332-334
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
Davis, G.4
Stacey, P.5
-
9
-
-
0002297206
-
Operators with dense, invariant, cyclic manifolds
-
Godefroy G. and Shapiro J.H. (1991). Operators with dense, invariant, cyclic manifolds. J. Funct. Anal. 98, 229-269.
-
(1991)
J. Funct. Anal
, vol.98
, pp. 229-269
-
-
Godefroy, G.1
Shapiro, J.H.2
-
12
-
-
33846528658
-
The imaginary point spectrum and hypercyclicity
-
El Mourchid S. (2006). The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313-316.
-
(2006)
Semigroup Forum
, vol.73
, Issue.2
, pp. 313-316
-
-
El Mourchid, S.1
-
13
-
-
0028388741
-
Time-continuous branching walk models of unstable gene amplification
-
Kimmel M. and Stivers D.N. (1994). Time-continuous branching walk models of unstable gene amplification. Bull. Math. Biol. 50, 337-357.
-
(1994)
Bull. Math. Biol
, vol.50
, pp. 337-357
-
-
Kimmel, M.1
Stivers, D.N.2
-
14
-
-
0027218485
-
Regulation and mechanisms of mammalian gene amplification
-
Stark G.R. (1993). Regulation and mechanisms of mammalian gene amplification. Adv. Cancer Res. 62, 87-113.
-
(1993)
Adv. Cancer Res
, vol.62
, pp. 87-113
-
-
Stark, G.R.1
-
15
-
-
0242672936
-
Molecular dissection of mammalian gene amplification: New mechanistic insights revealed by analysis of very early events
-
Windle B. and Wahl G.M. (1992). Molecular dissection of mammalian gene amplification: New mechanistic insights revealed by analysis of very early events. Mutat. Res. 270, 199-224.
-
(1992)
Mutat. Res
, vol.270
, pp. 199-224
-
-
Windle, B.1
Wahl, G.M.2
-
16
-
-
0031673822
-
Infinite-dimensional model of evolution of drug resistance of cancer cells
-
Kimmel M., Świerniak A. and Polański A. (1998). Infinite-dimensional model of evolution of drug resistance of cancer cells. J. Math. Syst. Estim. Control 8(1), 1-16.
-
(1998)
J. Math. Syst. Estim. Control
, vol.8
, Issue.1
, pp. 1-16
-
-
Kimmel, M.1
Świerniak, A.2
Polański, A.3
-
17
-
-
1842432593
-
Dynamics of the life history of a DNA-repeat sequence
-
No. 1-2
-
Bobrowski A. and Kimmel M. (1999). Dynamics of the life history of a DNA-repeat sequence. Arch. Control Sci. 9(45), No. 1-2, 57-67.
-
(1999)
Arch. Control Sci
, vol.9
, Issue.45
, pp. 57-67
-
-
Bobrowski, A.1
Kimmel, M.2
-
18
-
-
0347748133
-
Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats
-
Bobrowski A. and Kimmel M. (1999). Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats. J. Biol. Syst. 7(1), 33-43.
-
(1999)
J. Biol. Syst
, vol.7
, Issue.1
, pp. 33-43
-
-
Bobrowski, A.1
Kimmel, M.2
-
19
-
-
0032168989
-
Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations
-
Kruglyak S., Durret R.T., Schug M.D. and Aquadro Ch.F. (1998). Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl Acad. Sci. USA 95, 10774-10778.
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 10774-10778
-
-
Kruglyak, S.1
Durret, R.T.2
Schug, M.D.3
Aquadro, C.F.4
-
20
-
-
84885793451
-
Asymptotic properties of microsatellite repeats model
-
Ustrzyki Gorne, September, pp
-
Świerniak A., Rzeszowska-Wolny J., Kimmel M. and Polański A. (1999). Asymptotic properties of microsatellite repeats model. In Proc. National Conference on Applications of Mathematics in Biology, Ustrzyki Gorne, 14-17 September, pp. 143-148.
-
(1999)
Proc. National Conference on Applications of Mathematics in Biology
-
-
Świerniak, A.1
Rzeszowska-Wolny, J.2
Kimmel, M.3
Polański, A.4
-
21
-
-
42149138380
-
Chaotic linear dynamical systems with applications
-
Rio de Janeiro, pp, Optimization Software, New York
-
Banasiak J. and Lachowicz M. (2001). Chaotic linear dynamical systems with applications. In Semigroups of Operators: Theory and applications (Rio de Janeiro), pp. 32-44. Optimization Software, New York.
-
(2001)
Semigroups of Operators: Theory and applications
, pp. 32-44
-
-
Banasiak, J.1
Lachowicz, M.2
-
22
-
-
0036327994
-
Topological chaos for birth-and-death-type models with proliferation
-
Banasiak J. and Lachowicz M. (2002). Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755-775.
-
(2002)
Math. Models Methods Appl. Sci
, vol.12
, Issue.6
, pp. 755-775
-
-
Banasiak, J.1
Lachowicz, M.2
-
24
-
-
33947609417
-
Chaotic behavior of semigroups related to the process of gene amplification-deamplification with cells' proliferation
-
Banasiak J. , Lachowicz M. and Moszynski M. (2007). Chaotic behavior of semigroups related to the process of gene amplification-deamplification with cells' proliferation. Math. Biosci. 206(2), 200-215.
-
(2007)
Math. Biosci
, vol.206
, Issue.2
, pp. 200-215
-
-
Banasiak, J.1
Lachowicz, M.2
Moszynski, M.3
-
26
-
-
0346338593
-
A size structured model of cell dwarfism
-
Howard K.E. (2001). A size structured model of cell dwarfism. Discrete Contin. Dyn. Syst. Ser. B 1(4), 471-484.
-
(2001)
Discrete Contin. Dyn. Syst. Ser. B
, vol.1
, Issue.4
, pp. 471-484
-
-
Howard, K.E.1
-
27
-
-
45449124401
-
Strong ergodic properties of a first-order partial differential equation
-
Rudnicki R. (1988). Strong ergodic properties of a first-order partial differential equation. J. Math. Anal. Appl. 133(1), 14-26.
-
(1988)
J. Math. Anal. Appl
, vol.133
, Issue.1
, pp. 14-26
-
-
Rudnicki, R.1
-
28
-
-
52749086977
-
-
Webb G.F. (1995). Periodic and chaotic behavior in structured models of cell population dynamics. In Recent Developments in Evolution Equations, eds A.C. McBride and G.F. Roach, Pitman Research Notes in Mathematics 134, 40-49. Longman Scientific & Technical, Harlow,
-
Webb G.F. (1995). Periodic and chaotic behavior in structured models of cell population dynamics. In Recent Developments in Evolution Equations, eds A.C. McBride and G.F. Roach, Pitman Research Notes in Mathematics 134, 40-49. Longman Scientific & Technical, Harlow,
-
-
-
-
30
-
-
18144399275
-
-
Banasiak and Moszynski M. (2005). A generalization of Desch Schappacher Webb criteria for chaos. Discr. Cont. Dyn. Sys. A 12(5), 959-972.
-
Banasiak and Moszynski M. (2005). A generalization of Desch Schappacher Webb criteria for chaos. Discr. Cont. Dyn. Sys. A 12(5), 959-972.
-
-
-
-
32
-
-
2442504002
-
A complete description of dynamics generated by birth-and-death problems: A semigroup approach
-
ed. R. Rudnicki. Banach Center Publications
-
Banasiak J. (2004). A complete description of dynamics generated by birth-and-death problems: A semigroup approach. In Mathematical Modelling of Population Dynamics, ed. R. Rudnicki. Banach Center Publications, vol. 63, 165-176.
-
(2004)
Mathematical Modelling of Population Dynamics
, vol.63
, pp. 165-176
-
-
Banasiak, J.1
|