-
1
-
-
0004011167
-
-
Ed R. Nagel. Springer, Berlin, Heidelberg, New York, Tokyo
-
W. Arendt et al. One Parameter Semigroups of Positive Operators (Lecture Notes in Mathematics 1184). Ed R. Nagel. Springer, Berlin, Heidelberg, New York, Tokyo, 1986.
-
(1986)
One Parameter Semigroups of Positive Operators (Lecture Notes in Mathematics 1184)
-
-
Arendt, W.1
-
2
-
-
0001743171
-
On Devaney's defininition of chaos
-
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey. On Devaney's defininition of chaos. Amer. Math. Monthly 99 (1992), 332-339.
-
(1992)
Amer. Math. Monthly
, vol.99
, pp. 332-339
-
-
Banks, J.1
Brooks, J.2
Cairns, G.3
Davis, G.4
Stacey, P.5
-
4
-
-
0020703034
-
Notes on chaos in the cell population partial differential equation
-
P. Brunovsky. Notes on chaos in the cell population partial differential equation. Nonlinear Anal. 7 (1983), 167-176.
-
(1983)
Nonlinear Anal.
, vol.7
, pp. 167-176
-
-
Brunovsky, P.1
-
5
-
-
0001414659
-
Ergodicity and exactness of the shift on C[0, ∞) and the semiflow of a first order partial differential equation
-
P. Brunovsky and J. Komornik. Ergodicity and exactness of the shift on C[0, ∞) and the semiflow of a first order partial differential equation. J. Math. Anal. Appl. 104 (1984), 235-245.
-
(1984)
J. Math. Anal. Appl.
, vol.104
, pp. 235-245
-
-
Brunovsky, P.1
Komornik, J.2
-
6
-
-
0001631710
-
The cyclic behavior of translation operators on Hilbert spaces of entire functions
-
K. C. Chan and J. H. Shapiro. The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana University Math. J. 40 (1991), 1421-1449.
-
(1991)
Indiana University Math. J.
, vol.40
, pp. 1421-1449
-
-
Chan, K.C.1
Shapiro, J.H.2
-
9
-
-
84968503341
-
Universal vectors for operators on spaces of holomorphic functions
-
R. M. Gethner and J. H. Shapiro. Universal vectors for operators on spaces of holomorphic functions. Proc. Amer. Math. Soc. 100 (1987), 281-288.
-
(1987)
Proc. Amer. Math. Soc.
, vol.100
, pp. 281-288
-
-
Gethner, R.M.1
Shapiro, J.H.2
-
10
-
-
0002297206
-
Operators with dense, invariant, cyclic vector manifolds
-
G. Godefroy and J. H. Shapiro. Operators with dense, invariant, cyclic vector manifolds. J. Functional Analysis 98 (1991), 229-269.
-
(1991)
J. Functional Analysis
, vol.98
, pp. 229-269
-
-
Godefroy, G.1
Shapiro, J.H.2
-
11
-
-
0001809086
-
Hypercyclic operators and chaos
-
D. A. Herrero. Hypercyclic operators and chaos. J. Operator Theory 28 (1992), 93-103.
-
(1992)
J. Operator Theory
, vol.28
, pp. 93-103
-
-
Herrero, D.A.1
-
14
-
-
0002358606
-
Stable and chaotic solutions of a first order partial differential equation
-
A. Lasota. Stable and chaotic solutions of a first order partial differential equation. Nonlinear Anal. 5 (1981), 1183-1193.
-
(1981)
Nonlinear Anal.
, vol.5
, pp. 1183-1193
-
-
Lasota, A.1
-
16
-
-
0004116528
-
-
Springer, New York
-
A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics (Applied Mathematical Science Series 97). Springer, New York, 1994.
-
(1994)
Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics (Applied Mathematical Science Series 97)
-
-
Lasota, A.1
Mackey, M.C.2
-
18
-
-
0002006402
-
On orbits of elements
-
S. Rolewicz. On orbits of elements. Studio Math. 32 (1969), 17-22.
-
(1969)
Studio Math.
, vol.32
, pp. 17-22
-
-
Rolewicz, S.1
-
19
-
-
0002766381
-
Multistability and boundary layer development in a transport equation with delayed arguments
-
A. O. Rey and M. C. Mackey. Multistability and boundary layer development in a transport equation with delayed arguments. Canad. Appl. Math. Quar. 1 (1993), 61-81.
-
(1993)
Canad. Appl. Math. Quar.
, vol.1
, pp. 61-81
-
-
Rey, A.O.1
Mackey, M.C.2
-
20
-
-
45449124401
-
Strong ergodic properties of a first-order partial differential equation
-
R. Rudnicki. Strong ergodic properties of a first-order partial differential equation. J. Math. Anal. Appl. 133 (1988), 14-26.
-
(1988)
J. Math. Anal. Appl.
, vol.133
, pp. 14-26
-
-
Rudnicki, R.1
-
21
-
-
0001185768
-
A hypercyclic operator whose adjoint is also hypercyclic
-
H. R. Salas. A hypercyclic operator whose adjoint is also hypercyclic. Proc. Amer. Math. Soc. 112 (1991), 765-770.
-
(1991)
Proc. Amer. Math. Soc.
, vol.112
, pp. 765-770
-
-
Salas, H.R.1
-
22
-
-
0001740675
-
Hypercyclic weighted shifts
-
H. R. Salas. Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347 (1995), 993-1004.
-
(1995)
Trans. Amer. Math. Soc.
, vol.347
, pp. 993-1004
-
-
Salas, H.R.1
|