-
2
-
-
33947609252
-
-
J. Banasiak, M. Lachowicz, Chaotic linear dynamical systems with applications, in: C. Kubrusly, N. Levan, M. da Silveira (Eds.), Proceedings of 2nd International Conference on Semigroups of Operators: Theory and Applications SOTA2, 2001, Optimization Software, Los Angeles, 2002, p. 32.
-
-
-
-
3
-
-
0034900685
-
Chaos for a class of linear kinetic models
-
Banasiak J., and Lachowicz M. Chaos for a class of linear kinetic models. Compt. Rend. Acad. Sci. Paris 329 Série IIb (2001) 439
-
(2001)
Compt. Rend. Acad. Sci. Paris
, vol.329
, Issue.SUPPL.-rie IIb
, pp. 439
-
-
Banasiak, J.1
Lachowicz, M.2
-
4
-
-
0036327994
-
Topological chaos for birth-and-death-type models with proliferation
-
Banasiak J., and Lachowicz M. Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12 6 (2002) 755
-
(2002)
Math. Models Methods Appl. Sci.
, vol.12
, Issue.6
, pp. 755
-
-
Banasiak, J.1
Lachowicz, M.2
-
6
-
-
18144399275
-
A generalization of Desch-Schappacher-Webb criteria for topological chaos with applications
-
Banasiak J., and Moszyński M. A generalization of Desch-Schappacher-Webb criteria for topological chaos with applications. Discrete Contin. Dyn. Syst. - A 12 5 (2005) 959
-
(2005)
Discrete Contin. Dyn. Syst. - A
, vol.12
, Issue.5
, pp. 959
-
-
Banasiak, J.1
Moszyński, M.2
-
7
-
-
33947586259
-
-
p spaces, submitted for publication.
-
-
-
-
10
-
-
33947582940
-
-
W. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 2nd ed., Wiley, New York, 1957.
-
-
-
-
11
-
-
0002297206
-
Operators with dense, invariant, cyclic manifold
-
Godefroy G., and Shapiro J.H. Operators with dense, invariant, cyclic manifold. J. Funct. Anal. 98 (1991) 229
-
(1991)
J. Funct. Anal.
, vol.98
, pp. 229
-
-
Godefroy, G.1
Shapiro, J.H.2
-
12
-
-
0027244763
-
Use of mathematical models for understanding the dynamics of gene amplification
-
Harnevo L.E., and Agur Z. Use of mathematical models for understanding the dynamics of gene amplification. Mutation Res. 292 (1993) 17
-
(1993)
Mutation Res.
, vol.292
, pp. 17
-
-
Harnevo, L.E.1
Agur, Z.2
-
13
-
-
0026031131
-
The dynamics of gene amplification described as a multitype compartamental model and as a branching process
-
Harnevo L.E., and Agur Z. The dynamics of gene amplification described as a multitype compartamental model and as a branching process. Math. Biosci. 103 (1991) 115
-
(1991)
Math. Biosci.
, vol.103
, pp. 115
-
-
Harnevo, L.E.1
Agur, Z.2
-
14
-
-
0037295935
-
Spectral properties of Jacobi matrices by asymptotic analysis
-
Janas J., and Moszyński M. Spectral properties of Jacobi matrices by asymptotic analysis. J. Approx. Theory 120 (2003) 309
-
(2003)
J. Approx. Theory
, vol.120
, pp. 309
-
-
Janas, J.1
Moszyński, M.2
-
15
-
-
84968465028
-
The classification of birth and death processes
-
Karlin S., and McGregor J. The classification of birth and death processes. Trans. Amer. Math. Soc. 86 (1957) 366
-
(1957)
Trans. Amer. Math. Soc.
, vol.86
, pp. 366
-
-
Karlin, S.1
McGregor, J.2
-
16
-
-
84972537321
-
On the semi-groups generated by Kolmogoroff's differential equation
-
Kato T. On the semi-groups generated by Kolmogoroff's differential equation. J. Math. Soc. Jpn. 6 1 (1954) 1
-
(1954)
J. Math. Soc. Jpn.
, vol.6
, Issue.1
, pp. 1
-
-
Kato, T.1
-
18
-
-
0028388741
-
Time-continuous branching walk models of unstable gene amplification
-
Kimmel M., and Stivers D.N. Time-continuous branching walk models of unstable gene amplification. Bull. Math. Biol. 56 2 (1994) 337
-
(1994)
Bull. Math. Biol.
, vol.56
, Issue.2
, pp. 337
-
-
Kimmel, M.1
Stivers, D.N.2
-
19
-
-
0025375922
-
Mathematical models of gene amplification with application to cellular-drug resistance and turmoigenecity
-
Kimmel M., and Axelrod D.E. Mathematical models of gene amplification with application to cellular-drug resistance and turmoigenecity. Genetics 125 3 (1990) 633
-
(1990)
Genetics
, vol.125
, Issue.3
, pp. 633
-
-
Kimmel, M.1
Axelrod, D.E.2
-
20
-
-
0001475647
-
Spectral theory for the differential equations of simple birth and death processes
-
Ledermann W., and Reuter G.E.H. Spectral theory for the differential equations of simple birth and death processes. Phil. Trans. Roy. Soc. London A2 46 (1954) 321
-
(1954)
Phil. Trans. Roy. Soc. London A2
, vol.46
, pp. 321
-
-
Ledermann, W.1
Reuter, G.E.H.2
-
24
-
-
2142676841
-
Chaos for some infinite-dimensional dynamical systems
-
Rudnicki R. Chaos for some infinite-dimensional dynamical systems. Math. Meth. Appl. Sci. 27 6 (2004) 723
-
(2004)
Math. Meth. Appl. Sci.
, vol.27
, Issue.6
, pp. 723
-
-
Rudnicki, R.1
-
25
-
-
0345854859
-
Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach
-
Świerniak A., Polański A., Kimmel M., Bobrowski A., and Śmieja J. Qualitative analysis of controlled drug resistance model - inverse Laplace and semigroup approach. Control Cybernet. 28 1 (1999) 61
-
(1999)
Control Cybernet.
, vol.28
, Issue.1
, pp. 61
-
-
Świerniak, A.1
Polański, A.2
Kimmel, M.3
Bobrowski, A.4
Śmieja, J.5
|