메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Regularized mixed dimensionality and density learning in computer vision

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; CONSTRAINT THEORY; DATA REDUCTION; MATHEMATICAL MODELS; PARAMETER ESTIMATION;

EID: 34948846086     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383401     Document Type: Conference Paper
Times cited : (1)

References (22)
  • 1
    • 34948892566 scopus 로고    scopus 로고
    • C. Ambroise and G. Govaert. Clustering of spatial data by the EM algorithm. In geoENV I - Geostatistics for Environmental Applications, 1996.
    • C. Ambroise and G. Govaert. Clustering of spatial data by the EM algorithm. In geoENV I - Geostatistics for Environmental Applications, 1996.
  • 2
    • 0032131450 scopus 로고    scopus 로고
    • Convergence of an EM-type algorithm for spatial clustering
    • C. Ambroise and G. Govaert. Convergence of an EM-type algorithm for spatial clustering. Pattern Recognition Letters, 19(10):919-927, 1998.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.10 , pp. 919-927
    • Ambroise, C.1    Govaert, G.2
  • 4
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in NIPS 14, 2002.
    • (2002) Advances in NIPS , vol.14
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 85156243112 scopus 로고    scopus 로고
    • Charting a manifold
    • M. Brand. Charting a manifold. In Advances in NIPS 16, 2002.
    • (2002) Advances in NIPS , vol.16
    • Brand, M.1
  • 7
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • J. A. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Processing, 52(8):2210-2221, 2004.
    • (2004) IEEE Trans. on Signal Processing , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 10
    • 85158056195 scopus 로고    scopus 로고
    • Stratification learning: Detecting mixed density and dimensionality in high dimensional, point clouds
    • G. Haro, G. Randall, and G. Sapiro. Stratification learning: Detecting mixed density and dimensionality in high dimensional, point clouds. In Advances in NIPS 19, 2006.
    • (2006) Advances in NIPS , vol.19
    • Haro, G.1    Randall, G.2    Sapiro, G.3
  • 11
    • 38049135335 scopus 로고
    • Another interpretation of the EM algorithm for mixture distributions
    • R. Hathaway. Another interpretation of the EM algorithm for mixture distributions. Statistics and Probability Letters, 4(2):53-56, 1986.
    • (1986) Statistics and Probability Letters , vol.4 , Issue.2 , pp. 53-56
    • Hathaway, R.1
  • 12
    • 5044226698 scopus 로고    scopus 로고
    • Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications
    • K. Huang, Y. Ma, and R. Vidal. Minimum effective dimension for mixtures of subspaces: A robust GPCA algorithm and its applications. In Proceedings of CVPR, pages 631-638, 2004.
    • (2004) Proceedings of CVPR , pp. 631-638
    • Huang, K.1    Ma, Y.2    Vidal, R.3
  • 13
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • Advances in
    • B. Kegl. Intrinsic dimension estimation using packing numbers. In Advances in NIPS 14, 2002.
    • (2002) NIPS 14
    • Kegl, B.1
  • 14
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. In Advances in NIPS 17, 2005.
    • (2005) Advances in NIPS , vol.17
    • Levina, E.1    Bickel, P.2
  • 16
    • 84880738109 scopus 로고    scopus 로고
    • Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting
    • P. Mordohai and G. Medioni. Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting. In IJCAI, page 798, 2005.
    • (2005) IJCAI , pp. 798
    • Mordohai, P.1    Medioni, G.2
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 19
    • 33745937349 scopus 로고    scopus 로고
    • Manifold clustering
    • R. Souvenir and R. Pless. Manifold clustering. In ICCV, pages 648-653, 2005.
    • (2005) ICCV , pp. 648-653
    • Souvenir, R.1    Pless, R.2
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 22
    • 51049110552 scopus 로고    scopus 로고
    • A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials
    • R. Vidal, Y. Ma, and J. Piazzi. A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials. In IEEE CVPR, pages 769-775, 2004.
    • (2004) IEEE CVPR , pp. 769-775
    • Vidal, R.1    Ma, Y.2    Piazzi, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.