-
1
-
-
52049098958
-
-
ALDOUS, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Springer, New York. MR0969362
-
ALDOUS, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Springer, New York. MR0969362
-
-
-
-
2
-
-
0000380180
-
On central limit theorems in geometrical probability
-
MR1241033
-
AVRAM, F. and BERTSIMAS, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033-1046. MR1241033
-
(1993)
Ann. Appl. Probab
, vol.3
, pp. 1033-1046
-
-
AVRAM, F.1
BERTSIMAS, D.2
-
3
-
-
0000193451
-
On normal approximations of distributions in terms of dependency graphs
-
MR1048950
-
BALDI, P. and RINOTT, Y. (.1989). On normal approximations of distributions in terms of dependency graphs. Ann. Probab. 17 1646-1650. MR1048950
-
(1989)
Ann. Probab
, vol.17
, pp. 1646-1650
-
-
BALDI, P.1
RINOTT, Y.2
-
4
-
-
52049109682
-
-
BALDI, P., RINOTT, Y. and STEIN, C. (.1989). A normal approximation for the number of local maxima of a random function on a graph. In Probability, Statistics and Mathematics, Papers in Honor of Samuel Karlin (T. W. Anderson, K. B. Athreya and D. L. Iglehart, eds.) 59-81. Academic Press, Boston, MA. MR1031278
-
BALDI, P., RINOTT, Y. and STEIN, C. (.1989). A normal approximation for the number of local maxima of a random function on a graph. In Probability, Statistics and Mathematics, Papers in Honor of Samuel Karlin (T. W. Anderson, K. B. Athreya and D. L. Iglehart, eds.) 59-81. Academic Press, Boston, MA. MR1031278
-
-
-
-
5
-
-
0000499854
-
Stein's method for diffusion approximations
-
MR1035659
-
BARBOUR, A. D. (1990). Stein's method for diffusion approximations. Probab. Theory Related Fields 84 297-322. MR1035659
-
(1990)
Probab. Theory Related Fields
, vol.84
, pp. 297-322
-
-
BARBOUR, A.D.1
-
6
-
-
0000467043
-
Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test
-
MR0682809
-
BICKEL, P. J. and BREIMAN, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185-214. MR0682809
-
(1983)
Ann. Probab
, vol.11
, pp. 185-214
-
-
BICKEL, P.J.1
BREIMAN, L.2
-
7
-
-
0000985130
-
Variational inequalities with examples and an application to the central limit theorem
-
MR1303658
-
CACOULLOS, T., PAPATHANASIOU, V. and UTEV, S. A. (1994). Variational inequalities with examples and an application to the central limit theorem. Ann. Probab. 22 1607-1618. MR1303658
-
(1994)
Ann. Probab
, vol.22
, pp. 1607-1618
-
-
CACOULLOS, T.1
PAPATHANASIOU, V.2
UTEV, S.A.3
-
9
-
-
33847617461
-
Stein's method for concentration inequalities
-
MR2288072
-
CHATTERJEE, S. (2006). Stein's method for concentration inequalities. Probab. Theory Related Fields 138 305-321. MR2288072
-
(2006)
Probab. Theory Related Fields
, vol.138
, pp. 305-321
-
-
CHATTERJEE, S.1
-
10
-
-
54349116100
-
Fluctuations of eigenvalues and second order Poincaré inequalities
-
To appear
-
CHATTERJEE, S. (2008). Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields. To appear.
-
(2008)
Probab. Theory Related Fields
-
-
CHATTERJEE, S.1
-
13
-
-
4544375370
-
Normal approximation under local dependence
-
MR2073183
-
CHEN, L. H. Y. and SHAO, Q.-M. (2004). Normal approximation under local dependence. Ann. Probab. 32 1985-2028. MR2073183
-
(2004)
Ann. Probab
, vol.32
, pp. 1985-2028
-
-
CHEN, L.H.Y.1
SHAO, Q.-M.2
-
14
-
-
52049107444
-
-
CHEN, L. H. Y. and SHAO, Q.-M. (2005). Stein's method for normal approximation. In An Introduction to Stein's Method (A. D. Barbour and L. H. Y. Chen, eds.) 1-59. IMS (NUS) Lecture Notes 4. World Scientific, Hackensack, NJ. MR2235448
-
CHEN, L. H. Y. and SHAO, Q.-M. (2005). Stein's method for normal approximation. In An Introduction to Stein's Method (A. D. Barbour and L. H. Y. Chen, eds.) 1-59. IMS (NUS) Lecture Notes 4. World Scientific, Hackensack, NJ. MR2235448
-
-
-
-
15
-
-
34250109475
-
A central limit theorem for generalized quadratic forms
-
MR0885466
-
DE JONG, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory Related Fields 75 261-277. MR0885466
-
(1987)
Probab. Theory Related Fields
, vol.75
, pp. 261-277
-
-
DE JONG, P.1
-
16
-
-
4544279028
-
Large deviation asymptotics for occupancy problems
-
MR2078557
-
DUPUIS, P., NUZMAN, C. and WHITING, P. (2004). Large deviation asymptotics for occupancy problems. Ann. Probab. 32 2765-2818. MR2078557
-
(2004)
Ann. Probab
, vol.32
, pp. 2765-2818
-
-
DUPUIS, P.1
NUZMAN, C.2
WHITING, P.3
-
17
-
-
0001368656
-
The jackknife estimate of variance
-
MR0615434
-
EFRON, B. and STEIN, C. (1981). The jackknife estimate of variance. Ann. Statist. 9 586-596. MR0615434
-
(1981)
Ann. Statist
, vol.9
, pp. 586-596
-
-
EFRON, B.1
STEIN, C.2
-
18
-
-
0010952412
-
A remainder term estimate for the normal approximation in classical occupancy
-
MR0624696
-
ENGLUND, G. (1981). A remainder term estimate for the normal approximation in classical occupancy. Ann. Probab. 9 684-692. MR0624696
-
(1981)
Ann. Probab
, vol.9
, pp. 684-692
-
-
ENGLUND, G.1
-
19
-
-
52049101837
-
-
FELLER, W. (1968). An Introduction to Probability Theory and Its Applications. I, 3rd ed. Wiley, New York. MR0228020
-
FELLER, W. (1968). An Introduction to Probability Theory and Its Applications. I, 3rd ed. Wiley, New York. MR0228020
-
-
-
-
20
-
-
0001161575
-
A Berry-Esseen bound for functions of independent random variables
-
MR0981443
-
FRIEDRICH, K. O. (1989). A Berry-Esseen bound for functions of independent random variables. Ann. Statist. 17 170-183. MR0981443
-
(1989)
Ann. Statist
, vol.17
, pp. 170-183
-
-
FRIEDRICH, K.O.1
-
21
-
-
52049083725
-
-
FULMAN, J. (2004). Stein's method and non-reversible Markov chains. In Stein's Method: Expository Lectures and Applications (P. Diaconis and S. Holmes, eds.) 69-77. IMS, Beachwood, OH. MR2118603
-
FULMAN, J. (2004). Stein's method and non-reversible Markov chains. In Stein's Method: Expository Lectures and Applications (P. Diaconis and S. Holmes, eds.) 69-77. IMS, Beachwood, OH. MR2118603
-
-
-
-
22
-
-
0031260681
-
Stein's method and the zero bias transformation with application to simple random sampling
-
MR1484792
-
GOLDSTEIN, L. and REINERT, G. (1997). Stein's method and the zero bias transformation with application to simple random sampling. Ann. Appl. Probab. 7 935-952. MR1484792
-
(1997)
Ann. Appl. Probab
, vol.7
, pp. 935-952
-
-
GOLDSTEIN, L.1
REINERT, G.2
-
23
-
-
0030535645
-
On multivariate normal approximations by Stein's method and size bias couplings
-
MR1371949
-
GOLDSTEIN, L. and RINOTT, Y. (1996). On multivariate normal approximations by Stein's method and size bias couplings. J. Appl. Probab. 33 1-17. MR1371949
-
(1996)
J. Appl. Probab
, vol.33
, pp. 1-17
-
-
GOLDSTEIN, L.1
RINOTT, Y.2
-
24
-
-
0040712215
-
Asymptotic distribution of quadratic forms
-
MR1699003
-
GÖTZE, F. and TIKHOMIROV, A.N. (1999). Asymptotic distribution of quadratic forms. Ann. Probab. 27 1072-1098. MR1699003
-
(1999)
Ann. Probab
, vol.27
, pp. 1072-1098
-
-
GÖTZE, F.1
TIKHOMIROV, A.N.2
-
25
-
-
0036306670
-
Asymptotic distribution of quadratic forms and applications
-
MR1898815
-
GÖTZE, F. and TIKHOMIROV, A. N. (2002). Asymptotic distribution of quadratic forms and applications. J. Theoret. Probab. 15 423-475. MR1898815
-
(2002)
J. Theoret. Probab
, vol.15
, pp. 423-475
-
-
GÖTZE, F.1
TIKHOMIROV, A.N.2
-
26
-
-
0001613468
-
The best constants in the Khintchine inequality
-
MR0654838
-
HAAGERUP, U. (1982). The best constants in the Khintchine inequality. Studia Math. 70 231-283. MR0654838
-
(1982)
Studia Math
, vol.70
, pp. 231-283
-
-
HAAGERUP, U.1
-
27
-
-
0001872520
-
Central limit theorem for integrated square error of multivariate nonparametric density estimators
-
MR0734096
-
HALL, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal. 14 1-16. MR0734096
-
(1984)
J. Multivariate Anal
, vol.14
, pp. 1-16
-
-
HALL, P.1
-
28
-
-
52049102931
-
-
HALL, P. (1988). Introduction to the Theory of Coverage Processes. Wiley, New York. MR0973404
-
HALL, P. (1988). Introduction to the Theory of Coverage Processes. Wiley, New York. MR0973404
-
-
-
-
29
-
-
0030501338
-
The central limit theorem for weighted minimal spanning trees on random points
-
MR1398055
-
KESTEN, H. and LEE, S. (1996). The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6 495-527. MR1398055
-
(1996)
Ann. Appl. Probab
, vol.6
, pp. 495-527
-
-
KESTEN, H.1
LEE, S.2
-
30
-
-
78649400333
-
Maximum Likelihood Estimation ofIntrinsic Dimension
-
L. K. Saul, Y Weiss and L. Bottou, eds, MIT Press, Cambridge, MA
-
LEVINA, E. and BICKEL, P.J. (2005). Maximum Likelihood Estimation ofIntrinsic Dimension. In Advances in NIPS 17 (L. K. Saul, Y Weiss and L. Bottou, eds.) 777-784. MIT Press, Cambridge, MA.
-
(2005)
Advances in NIPS
, vol.17
, pp. 777-784
-
-
LEVINA, E.1
BICKEL, P.J.2
-
31
-
-
52049118577
-
-
PENROSE, M. D. (2003). Random Geometric Graphs. Oxford Univ. Press. MR1986198
-
PENROSE, M. D. (2003). Random Geometric Graphs. Oxford Univ. Press. MR1986198
-
-
-
-
32
-
-
0035497809
-
Central limit theorems for some graphs in computational geometry
-
MR1878288
-
PENROSE, M. D. and YUKICH, J. E. (2001). Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 111005-1041. MR1878288
-
(2001)
Ann. Appl. Probab
, vol.11
, pp. 1005-1041
-
-
PENROSE, M.D.1
YUKICH, J.E.2
-
33
-
-
4544380832
-
A multivariate CLT for decomposable random vectors with finite second moments
-
MR2091552
-
RAIČ, M. (2004). A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret. Probab. 17 573-603. MR2091552
-
(2004)
J. Theoret. Probab
, vol.17
, pp. 573-603
-
-
RAIČ, M.1
-
34
-
-
0030075451
-
-1/2 log n rate and applications to multivariate graph related statistics
-
MR1379533
-
-1/2 log n rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56 333-350. MR1379533
-
(1996)
J. Multivariate Anal
, vol.56
, pp. 333-350
-
-
RINOTT, Y.1
ROTAR, V.2
-
35
-
-
0031260684
-
On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics
-
MR1484798
-
RINOTT, Y and ROTAR, V. (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. Ann. Appl. Probab. 7 1080-1105. MR1484798
-
(1997)
Ann. Appl. Probab
, vol.7
, pp. 1080-1105
-
-
RINOTT, Y.1
ROTAR, V.2
-
36
-
-
0042834085
-
On edgeworth expansions for dependency-neighborhoods chain structures and Stein's method
-
MR2001197
-
RINOTT, Y. and ROTAR, V. (2003). On edgeworth expansions for dependency-neighborhoods chain structures and Stein's method. Probab. Theory Related Fields 126 528-570. MR2001197
-
(2003)
Probab. Theory Related Fields
, vol.126
, pp. 528-570
-
-
RINOTT, Y.1
ROTAR, V.2
-
37
-
-
0040190908
-
Some limit theorems for polynomials of second degree
-
MR0326803
-
ROTAR, V. I. (1973). Some limit theorems for polynomials of second degree. Theory Probab. Appl. 18 499-507. MR0326803
-
(1973)
Theory Probab. Appl
, vol.18
, pp. 499-507
-
-
ROTAR, V.I.1
-
38
-
-
52049123365
-
-
RÜSCHENDORF, L. (1985). Projections and iterative procedures. In Multivariate Analysis VI (P. R. Krishnaiah, ed.) 485-493. North-Holland, Amsterdam. MR0822314
-
RÜSCHENDORF, L. (1985). Projections and iterative procedures. In Multivariate Analysis VI (P. R. Krishnaiah, ed.) 485-493. North-Holland, Amsterdam. MR0822314
-
-
-
-
39
-
-
0001150838
-
An Efron-Stein inequality for nonsymmetric statistics
-
MR0840528
-
STEELE, J. M. (1986). An Efron-Stein inequality for nonsymmetric statistics. Ann. Statist. 14 753-758. MR0840528
-
(1986)
Ann. Statist
, vol.14
, pp. 753-758
-
-
STEELE, J.M.1
-
40
-
-
52049104981
-
-
STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. of the Sixth Berkeley Symp. Math. Statist. Probab. II. Probability Theory 583-602. Univ. California Press, Berkeley. MR0402873
-
STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. of the Sixth Berkeley Symp. Math. Statist. Probab. II. Probability Theory 583-602. Univ. California Press, Berkeley. MR0402873
-
-
-
-
41
-
-
52049094387
-
-
S TEIN, C. (1986). Approximate Computation of Expectations. IMS Lecture Notes-Monograph Series 7. IMS, Hayward, CA. MR0882007
-
S TEIN, C. (1986). Approximate Computation of Expectations. IMS Lecture Notes-Monograph Series 7. IMS, Hayward, CA. MR0882007
-
-
-
-
42
-
-
52049108303
-
-
YIJKICH, J. E. (1998). Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Math. 1675. Springer, Berlin. MR1632875
-
YIJKICH, J. E. (1998). Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Math. 1675. Springer, Berlin. MR1632875
-
-
-
-
43
-
-
0000654995
-
A Berry-Esseen bound for symmetric statistics
-
MR0751580
-
VAN ZWET, W. R. (1984). A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. Verw. Gebiete 66 425-440. MR0751580
-
(1984)
Z. Wahrsch. Verw. Gebiete
, vol.66
, pp. 425-440
-
-
VAN ZWET, W.R.1
|