-
1
-
-
0031505974
-
Error bound in a central limit theorem for double-indexed permutation stat
-
Bai, Z., Chao, C.-C., and Zhao, L. (1997). Error bound in a central limit theorem for double-indexed permutation stat. Ann. Stat. 25, 2210-2227.
-
(1997)
Ann. Stat.
, vol.25
, pp. 2210-2227
-
-
Bai, Z.1
Chao, C.-C.2
Zhao, L.3
-
3
-
-
0000499854
-
Stein's method for diffusion approximations
-
Barbour, A. D. (1990). Stein's method for diffusion approximations. Probab. Theory Relat. Fields 84, 297-322.
-
(1990)
Probab. Theory Relat. Fields
, vol.84
, pp. 297-322
-
-
Barbour, A.D.1
-
4
-
-
3242877769
-
Tests for space-time clustering
-
Stochastic Spatial Processes (Heidelberg, 1984), Springer, Berlin
-
Barbour, A. D., and Eagleson, G. K. (1986). Tests for space-time clustering. Stochastic Spatial Processes (Heidelberg, 1984), Lecture Notes in Math., Vol. 1212, Springer, Berlin, pp. 42-51.
-
(1986)
Lecture Notes in Math.
, vol.1212
, pp. 42-51
-
-
Barbour, A.D.1
Eagleson, G.K.2
-
5
-
-
0004133549
-
-
Clarendon Press, Oxford
-
Barbour, A. D., Holst, L., and Janson, S. (1992). Poisson Approximation. Clarendon Press, Oxford.
-
(1992)
Poisson Approximation
-
-
Barbour, A.D.1
Holst, L.2
Janson, S.3
-
6
-
-
38249005717
-
A central limit theorem for decomposable random variables with applications to random graphs
-
Barbour, A. D., Karoński, M., and Ruciński, A. (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125-145.
-
(1989)
J. Combin. Theory Ser. B
, vol.47
, pp. 125-145
-
-
Barbour, A.D.1
Karoński, M.2
Ruciński, A.3
-
7
-
-
0035539858
-
Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics
-
Bloznelis, M., and Götze, F. (2001). Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29, 899-917.
-
(2001)
Ann. Stat.
, vol.29
, pp. 899-917
-
-
Bloznelis, M.1
Götze, F.2
-
8
-
-
0036630775
-
An Edgeworth expansion for symmetric finite population statistics
-
Bloznelis, M., and Götze, F. (2003). An Edgeworth expansion for symmetric finite population statistics. Ann. Probab. 30, 1238-1265.
-
(2003)
Ann. Probab.
, vol.30
, pp. 1238-1265
-
-
Bloznelis, M.1
Götze, F.2
-
9
-
-
0000817812
-
An estimate of the remainder in a combinatorial central limit theorem
-
Bolthausen, E. (1984). An estimate of the remainder in a combinatorial central limit theorem. Z. Wahrsch. Verw. Gebiete 66, 379-386.
-
(1984)
Z. Wahrsch. Verw. Gebiete
, vol.66
, pp. 379-386
-
-
Bolthausen, E.1
-
10
-
-
21344480022
-
The rate of convergence for multivariate sampling statistics
-
Bolthausen, E., and Götze, F. (1993). The rate of convergence for multivariate sampling statistics. Ann. Stat. 21, 1692-1710.
-
(1993)
Ann. Stat.
, vol.21
, pp. 1692-1710
-
-
Bolthausen, E.1
Götze, F.2
-
11
-
-
0000484047
-
The Berry-Esséen theorem for U-statistics
-
Callaert, H., and Janssen, P. (1978). The Berry-Esséen theorem for U-statistics. Ann. Stat. 6, 417-421.
-
(1978)
Ann. Stat.
, vol.6
, pp. 417-421
-
-
Callaert, H.1
Janssen, P.2
-
13
-
-
0010707466
-
p bound for the remainder in a combinatorial central limit theorem
-
p bound for the remainder in a combinatorial central limit theorem. Ann. Probab. 6, 231-249.
-
(1978)
Ann. Probab.
, vol.6
, pp. 231-249
-
-
Chen, L.H.Y.1
Ho, S.-T.2
-
14
-
-
0035625610
-
A non-uniform Berry-Esséen bound via Stein's method
-
Chen, L. H. Y., and Shao, Q.-M. (2001). A non-uniform Berry-Esséen bound via Stein's method. Probab. Theory Relat. Fields 120 (3), 236-254.
-
(2001)
Probab. Theory Relat. Fields
, vol.120
, Issue.3
, pp. 236-254
-
-
Chen, L.H.Y.1
Shao, Q.-M.2
-
18
-
-
0039988155
-
On the Berry-Esséen theorem
-
Feller, W. (1968). On the Berry-Esséen theorem. Z. Wahrsch. Verw. Gebiete 10, 261-268.
-
(1968)
Z. Wahrsch. Verw. Gebiete
, vol.10
, pp. 261-268
-
-
Feller, W.1
-
19
-
-
0031260681
-
Stein's method and the zero bias transformation with applications to simple random sampling
-
Goldstein, L., and Reinert, G. (1997). Stein's method and the zero bias transformation with applications to simple random sampling. Ann. Appl. Probab. 7(4), 935-952.
-
(1997)
Ann. Appl. Probab.
, vol.7
, Issue.4
, pp. 935-952
-
-
Goldstein, L.1
Reinert, G.2
-
20
-
-
0030535645
-
Multivariate normal approximations by Stein's method and size biased couplings
-
Goldstein, L., and Rinott, Y. (1996). Multivariate normal approximations by Stein's method and size biased couplings. J. Appl. Probab. 33, 1-17.
-
(1996)
J. Appl. Probab.
, vol.33
, pp. 1-17
-
-
Goldstein, L.1
Rinott, Y.2
-
21
-
-
0001354702
-
On the rate of convergence in the multivariate CLT
-
Götze, F. (1991). On the rate of convergence in the multivariate CLT. Ann. Probab. 19, 724-739.
-
(1991)
Ann. Probab.
, vol.19
, pp. 724-739
-
-
Götze, F.1
-
22
-
-
0001744704
-
A class of statistics with asymptotically normal distribution
-
Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19, 293-325.
-
(1948)
Ann. Math. Stat.
, vol.19
, pp. 293-325
-
-
Hoeffding, W.1
-
23
-
-
0012840901
-
Note on the Berry-Esséen theorem
-
Katz, M. L. (1963). Note on the Berry-Esséen theorem. Ann. Math. Stat. 34, 1107-1108.
-
(1963)
Ann. Math. Stat.
, vol.34
, pp. 1107-1108
-
-
Katz, M.L.1
-
24
-
-
0000200653
-
An Edgeworth expansion for U-statistics based on samples from finite populations
-
Kokic, P. N., and Weber, N. C. An Edgeworth expansion for U-statistics based on samples from finite populations. Ann. Probab. 18, 390-404.
-
Ann. Probab.
, vol.18
, pp. 390-404
-
-
Kokic, P.N.1
Weber, N.C.2
-
25
-
-
84951511246
-
On the Hoeffding's combinatorial central limit theorem
-
Motoo, M. (1957). On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Stat. Math. 8, 145-154.
-
(1957)
Ann. Inst. Stat. Math.
, vol.8
, pp. 145-154
-
-
Motoo, M.1
-
26
-
-
0005383169
-
On the properties of U-statistics when the observations are not independent II: Unbiased estimation of the parameters of a finite population
-
Nandi, H. K., and Sen, P. K. (1963). On the properties of U-statistics when the observations are not independent II: Unbiased estimation of the parameters of a finite population. Calcutta Stat. Assoc. Bull. 12, 124-148.
-
(1963)
Calcutta Stat. Assoc. Bull.
, vol.12
, pp. 124-148
-
-
Nandi, H.K.1
Sen, P.K.2
-
27
-
-
0040956131
-
Asymptotic normality of double-indexed linear permutation statistics Ann
-
Pham, D. T., Möcks, J., and Sroka, L. (1989). Asymptotic normality of double-indexed linear permutation statistics Ann. Inst. Statist. Math. 41, 415-427.
-
(1989)
Inst. Statist. Math.
, vol.41
, pp. 415-427
-
-
Pham, D.T.1
Möcks, J.2
Sroka, L.3
-
28
-
-
0000060362
-
On normal approximation rates for certain sums of dependent random variables
-
Rinott, Y. (1994). On normal approximation rates for certain sums of dependent random variables. J. Appl. Comput. Math. 55, 135-143.
-
(1994)
J. Appl. Comput. Math.
, vol.55
, pp. 135-143
-
-
Rinott, Y.1
-
29
-
-
0030075451
-
-1/2log n rate and applications to multivariate graph related statistics
-
-1/2log n rate and applications to multivariate graph related statistics. J. Multivariate Anal. 56, 333-350.
-
(1996)
J. Multivariate Anal.
, vol.56
, pp. 333-350
-
-
Rinott, Y.1
Rotar, V.2
-
30
-
-
0031260684
-
On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics
-
Rinott, Y., and Rotar, V. (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. Ann. Appl. Probab. 7, 1080-1105.
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 1080-1105
-
-
Rinott, Y.1
Rotar, V.2
-
31
-
-
34250093035
-
A short proof of Motoo's combinatorial central limit theorem using Stein's method
-
Schneller, W. (1988). A short proof of Motoo's combinatorial central limit theorem using Stein's method. Probab. Theory Relat. Fields 78(2), 249-252.
-
(1988)
Probab. Theory Relat. Fields
, vol.78
, Issue.2
, pp. 249-252
-
-
Schneller, W.1
-
33
-
-
0005358898
-
Berry-Esseen bounds for finite-population U-statistics
-
Zhao, L. C., and Chen, X. R. (1987). Berry-Esseen bounds for finite-population U-statistics. Sci. Sinica Ser. A 30, 113-127.
-
(1987)
Sci. Sinica Ser. A
, vol.30
, pp. 113-127
-
-
Zhao, L.C.1
Chen, X.R.2
-
34
-
-
0000625407
-
Normal approximation for finite-population U-statistics
-
Zhao, L. C., and Chen, X. R. (1990). Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica (English Ser.) 6, 263-272.
-
(1990)
Acta Math. Appl. Sinica (English Ser.)
, vol.6
, pp. 263-272
-
-
Zhao, L.C.1
Chen, X.R.2
|