메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Discriminative modeling by boosting on multilevel aggregates

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTER VISION; FEATURE EXTRACTION; IMAGE PROCESSING; LABELING; PATTERN RECOGNITION;

EID: 51949109617     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587489     Document Type: Conference Paper
Times cited : (10)

References (19)
  • 1
    • 33745856534 scopus 로고    scopus 로고
    • Spatialboost: Adding spatial reasoning to adaboost
    • S. Avidan. Spatialboost: Adding spatial reasoning to adaboost. In Proc. of ECCV, pages 386-396, 2006.
    • (2006) Proc. of ECCV , pp. 386-396
    • Avidan, S.1
  • 4
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. J. Comp. and Sys. Sci., 55(1):119-139, 1997.
    • (1997) J. Comp. and Sys. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 51949092045 scopus 로고    scopus 로고
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Tech. Rpt., Statistics, Stanford Univ., 1998.
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Tech. Rpt., Statistics, Stanford Univ., 1998.
  • 6
    • 84932613588 scopus 로고    scopus 로고
    • Adatree: Boosting a weak classifier into a decision tree
    • E. Grossmann. Adatree: Boosting a weak classifier into a decision tree. In Proc. of CVPR Workshop v. 6, 2004.
    • (2004) Proc. of CVPR Workshop , vol.6
    • Grossmann, E.1
  • 7
    • 51949113208 scopus 로고    scopus 로고
    • C. E. Guo, S. C. Zhu, and Y. N. Wu. Primal sketch: Integrating texture and structure. J. of Comp. Vis. and Img. Und., 2006.
    • C. E. Guo, S. C. Zhu, and Y. N. Wu. Primal sketch: Integrating texture and structure. J. of Comp. Vis. and Img. Und., 2006.
  • 8
    • 24644449267 scopus 로고    scopus 로고
    • M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In Proc. of CVPR, pp. 18-25, 2005.
    • M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In Proc. of CVPR, pp. 18-25, 2005.
  • 9
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proc. of ICML, 2001.
    • (2001) Proc. of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 10
  • 11
    • 0033701242 scopus 로고    scopus 로고
    • Fast Multiscale Image Segmentation
    • E. Sharon, A. Brandt, and R. Basri. Fast Multiscale Image Segmentation. In Proc. of CVPR, v. I, pp. 70-77, 2000.
    • (2000) Proc. of CVPR , vol.1 , pp. 70-77
    • Sharon, E.1    Brandt, A.2    Basri, R.3
  • 12
    • 33845423382 scopus 로고    scopus 로고
    • TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation. In Proc. of ECCV, 2006.
    • (2006) Proc. of ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 13
    • 5044224293 scopus 로고    scopus 로고
    • Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection
    • A. Torralba, K. Murphy, and W. T. Freeman. Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection. In Proc. of CVPR, 2004.
    • (2004) Proc. of CVPR
    • Torralba, A.1    Murphy, K.2    Freeman, W.T.3
  • 14
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering
    • Z. Tu. Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering. In Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Tu, Z.1
  • 15
    • 0036566199 scopus 로고    scopus 로고
    • Image Segmentation by Data-Driven Markov Chain Monte Carlo
    • Z. Tu and S. C. Zhu. Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE Trans. on PAMI, 24(5):657-673, 2002.
    • (2002) IEEE Trans. on PAMI , vol.24 , Issue.5 , pp. 657-673
    • Tu, Z.1    Zhu, S.C.2
  • 16
    • 2142812371 scopus 로고    scopus 로고
    • Robust Real-Time Face Detection
    • P. Viola and M. J. Jones. Robust Real-Time Face Detection. Intl. J. of Comp. Vis., 57(2):137-154, 2004.
    • (2004) Intl. J. of Comp. Vis , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.J.2
  • 17
    • 35148895918 scopus 로고    scopus 로고
    • Compositional boosting for computing hierarchical image structures
    • T. F. Wu, G. S. Xia, and S. C. Zhu. Compositional boosting for computing hierarchical image structures. In Proc. of CVPR, pp. 1-8, 2007.
    • (2007) Proc. of CVPR , pp. 1-8
    • Wu, T.F.1    Xia, G.S.2    Zhu, S.C.3
  • 18
    • 34548709821 scopus 로고    scopus 로고
    • Introduction to a Large Scale General Purpose Ground Truth Dataset: Methodology, Annotation Tool, and Benchmarks
    • Z. Yao, X. Yang, and S. C. Zhu. Introduction to a Large Scale General Purpose Ground Truth Dataset: Methodology, Annotation Tool, and Benchmarks. In Proc. of EMMCVPR, 2007.
    • (2007) Proc. of EMMCVPR
    • Yao, Z.1    Yang, X.2    Zhu, S.C.3
  • 19
    • 34948814577 scopus 로고    scopus 로고
    • Detecting Object Boundaries Using Low-, Mid-, and High-Level Information
    • S.-F. Zheng, Z. Tu, and A. Yuille. Detecting Object Boundaries Using Low-, Mid-, and High-Level Information. In Proc. of CVPR, 2007.
    • (2007) Proc. of CVPR
    • Zheng, S.-F.1    Tu, Z.2    Yuille, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.