-
1
-
-
0012372245
-
Improving algorithms for boosting
-
Morgan Kaufmann, San Francisco
-
J. A. Aslam. Improving algorithms for boosting. In Annual Conf. on Computational Learning Theory, pages 200-207. Morgan Kaufmann, San Francisco, 2000.
-
(2000)
Annual Conf. on Computational Learning Theory
, pp. 200-207
-
-
Aslam, J.A.1
-
2
-
-
0024700466
-
A tree-based statistical language model for natural language speech recognition
-
L. R. Bahl, P. F. Brown, P. V. DeSouza, and R. L Mercer. A tree-based statistical language model for natural language speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7):1001-1008, 1989.
-
(1989)
IEEE Transactions on Acoustics Speech, and Signal Processing
, vol.37
, Issue.7
, pp. 1001-1008
-
-
Bahl, L.R.1
Brown, P.F.2
Desouza, P.V.3
Mercer, R.L.4
-
3
-
-
0002980086
-
Learning classification trees
-
W. Buntine. Learning classification trees. Statistics and Computing, 2(63-73), 1992.
-
(1992)
Statistics and Computing
, vol.2
, pp. 63-73
-
-
Buntine, W.1
-
4
-
-
33644941482
-
Object recognitio n by a cascade of edge probes
-
O. Carmichael and M. Hebert. Object recognitio n by a cascade of edge probes. In BMVC, pages 103-112, 2002.
-
(2002)
BMVC
, pp. 103-112
-
-
Carmichael, O.1
Hebert, M.2
-
6
-
-
4544380886
-
Facial feature detection using adaboost with shape constraints
-
D. Cristinacce and T. Cootes. Facial feature detection using adaboost with shape constraints. In BMVC, volume 1, pages 231-240, 2003.
-
(2003)
BMVC
, vol.1
, pp. 231-240
-
-
Cristinacce, D.1
Cootes, T.2
-
7
-
-
0013316935
-
Adacost: Misclassi fication cost-sensitive boosting
-
W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: misclassi fication cost-sensitive boosting. In Intl. Conf. on Machine Learning, pages 97-105, 1999.
-
(1999)
Intl. Conf. on Machine Learning
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
11
-
-
0029700730
-
On the boosting ability of top-down decision tree learning algorithms
-
M. Kearns and Y. Mansour. On the boosting ability of top-down decision tree learning algorithms. In ACM Symp. on the Th. of Computing pages 459-468, 1996.
-
(1996)
ACM Symp. on the Th. of Computing
, pp. 459-468
-
-
Kearns, M.1
Mansour, Y.2
-
12
-
-
77952073383
-
Floatboost learning for classification
-
S. Li, Z. Zhang, L. Zhu, H.-Y. Shum, and H. Zhang. Floatboost learning for classification. In NIPS, 2003.
-
(2003)
NIPS
-
-
Li, S.1
Zhang, Z.2
Zhu, L.3
Shum, H.-Y.4
Zhang, H.5
-
15
-
-
0037368936
-
Automatic model selection in cost-sensitive boosting
-
S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Automatic model selection in cost-sensitive boosting. Information Fusion, 4(1):3-10, 2003.
-
(2003)
Information Fusion
, vol.4
, Issue.1
, pp. 3-10
-
-
Merler, S.1
Furlanello, C.2
Larcher, B.3
Sboner, A.4
-
18
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
19
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. In ICML, 1997.
-
(1997)
ICML
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
20
-
-
0033281701
-
Improved boosting algorithms us ing confidence-rated predictions
-
R. E. Schapire and Y. Singer. Improved boosting algorithms us ing confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
|