-
1
-
-
34250184636
-
-
(a) Park, Y. S.; Wang, S. C.; Tantillo, D. J.; Little, R. D. J. Org. Chem. 2007, 72, 4351-4357.
-
(2007)
J. Org. Chem
, vol.72
, pp. 4351-4357
-
-
Park, Y.S.1
Wang, S.C.2
Tantillo, D.J.3
Little, R.D.4
-
2
-
-
20344396374
-
-
(b) Gerken, J. B.; Wang, S. C.; Preciado, A. B.; Park, Y. S.; Nishiguchi, G.; Tantillo, D. J.; Little, R. D. J. Org. Chem. 2005, 70, 4598-4608.
-
(2005)
J. Org. Chem
, vol.70
, pp. 4598-4608
-
-
Gerken, J.B.1
Wang, S.C.2
Preciado, A.B.3
Park, Y.S.4
Nishiguchi, G.5
Tantillo, D.J.6
Little, R.D.7
-
3
-
-
0032819667
-
-
As a component in flavors and fragrances, see
-
As a component in flavors and fragrances, see: Mazzoni, V.; Tomi, F.; Casanova, J. Flavour Fragr. J. 1999, 14, 268-272.
-
(1999)
Flavour Fragr. J
, vol.14
, pp. 268-272
-
-
Mazzoni, V.1
Tomi, F.2
Casanova, J.3
-
4
-
-
51549113514
-
-
For previous synthetic efforts, see: a
-
For previous synthetic efforts, see: (a) Pigulevskii, G. V.; Kivaleva, V. I. Doklady Akad. Nauk S.S.S.R. 1961, 141, 1382.
-
(1961)
Doklady Akad. Nauk S.S.S.R
, vol.141
, pp. 1382
-
-
Pigulevskii, G.V.1
Kivaleva, V.I.2
-
5
-
-
0001460044
-
-
(b) Sriraman, M. C.; Nagasampagi, B. A.; Pandey, R. C.; Dev, S. Tetrahedron 1973, 29, 985-991.
-
(1973)
Tetrahedron
, vol.29
, pp. 985-991
-
-
Sriraman, M.C.1
Nagasampagi, B.A.2
Pandey, R.C.3
Dev, S.4
-
6
-
-
0342904422
-
-
(c) Audenaert, F.; Keukeleire, D. D.; Vandewalle, M. Tetrahedron 1987, 43, 5593-5604.
-
(1987)
Tetrahedron
, vol.43
, pp. 5593-5604
-
-
Audenaert, F.1
Keukeleire, D.D.2
Vandewalle, M.3
-
8
-
-
0001326370
-
-
(e) Seto, H.; Fujimoto, Y.; Tatsuno, T.; Yoshioka, H. Synth. Commun. 1985, 15, 1217-1224.
-
(1985)
Synth. Commun
, vol.15
, pp. 1217-1224
-
-
Seto, H.1
Fujimoto, Y.2
Tatsuno, T.3
Yoshioka, H.4
-
13
-
-
51549108048
-
-
That the rearrangement occurred toward the proximal methyl group was confirmed by the appearance of a vinyl proton signal at 5.32 ppm that is consistent with a proximal migration to the tertiary bridgehead carbon. A methyl group signal appeared at 0.95 ppm, far upfield of that expected for the allylic methyl group that would have been present had the migration occurred in the opposite direction. Resonances appearing at 124.1 and 152.7 ppm of the 13C NMR spectrum confirmed the presence of the alkene
-
13C NMR spectrum confirmed the presence of the alkene.
-
-
-
-
15
-
-
0036858974
-
-
(a) Ciminale, F.; Lopez, L.; Farinola, G. M.; Sportelli, S.; Nacci, A. Eur. J. Org. Chem. 2002, 3850-3854.
-
(2002)
Eur. J. Org. Chem
, pp. 3850-3854
-
-
Ciminale, F.1
Lopez, L.2
Farinola, G.M.3
Sportelli, S.4
Nacci, A.5
-
16
-
-
0035855371
-
-
Ciminale, F, Lopez, L, Farinola, G. M, Sportelli, S. Tetrahedron Lett. 2001, 42, 5685-5687. These researchers showed that the antimonate salt releases SbCl5 via an equilibrium process. The base, therefore, suppresses Lewis acid promoted pathways. That antimonate that is not consumed by complexation is available to serve as the oxidizing agent that is required to initiate the rearrangement. Given the irreversibility of the complexation, it is not surprising that one must increase the amount of the antimonate salt in order to assure that the desired reaction proceeds to completion. In practice, after 10 min in the presence of 20 mol, of the antimonate salt, the blue-green color corresponding to the presence of (BrC6H4)3N•+ changed to a dark yellow. An additional 20 mol, of the antimonate was needed to maintain the blue color and drive the reaction to completion
-
•+ changed to a dark yellow. An additional 20 mol % of the antimonate was needed to maintain the blue color and drive the reaction to completion.
-
-
-
-
17
-
-
51549111917
-
-
A larger than customary amount of the trisarylamine was used in an effort to force the reaction to completion with the expectation of an increase in the yield. Unfortunately, this did not prove to be the case. Rather than having the desired outcome, the presence of additional mediator led to the oxidation of the product, with the formation of an unidentified byproduct as soon as the starting material was consumed
-
A larger than customary amount of the trisarylamine was used in an effort to force the reaction to completion with the expectation of an increase in the yield. Unfortunately, this did not prove to be the case. Rather than having the desired outcome, the presence of additional mediator led to the oxidation of the product, with the formation of an unidentified byproduct as soon as the starting material was consumed.
-
-
-
-
18
-
-
51549108850
-
-
We are well aware of the fact that the sequence from the rearrangement product 7 to daucene could have been conducted in a more elegant manner. We opted, instead, for an expeditious approach and to focus our attention upon gaining an understanding of the fundamental chemistry of cation radicals and mediated redox processes.
-
We are well aware of the fact that the sequence from the rearrangement product 7 to daucene could have been conducted in a more elegant manner. We opted, instead, for an expeditious approach and to focus our attention upon gaining an understanding of the fundamental chemistry of cation radicals and mediated redox processes.
-
-
-
-
19
-
-
33746563448
-
-
Shao, Y, Molnar, L. F, Jung, Y, Kussmann, J, Ochsenfeld, C, Brown, S. T, Gilbert, A. T. B, Slipchenko, L. V, Levchenko, S. V, O'Neill, D. P, DiStasio, R. A, Jr, Lochan, R. C, Wang, T, Beran, G. J. O, Besley, N. A, Herbert, J. M, Lin, C. Y, Van Voorhis, T, Chien, S. H, Sodt, A, Steele, R. P, Rassolov, V. A, Maslen, P. E, Korambath, P. P, Adamson, R. D, Austin, B, Baker, J, Byrd, E. F. C, Dachsel, H, Doerksen, R. J, Dreuw, A, Dunietz, B. D, Dutoi, A. D, Furlani, T. R, Gwaltney, S. R, Heyden, A, Hirata, S, Hsu, C.-P, Kedziora, G, Khalliulin, R. Z, Hunzinger, P, Lee, A. M, Lee, M. S, Liang, W. Z, Lotan, I, Nair, N, Peters, B, Proynov, E. I, Pieniazek, P. A, Rhee, Y. M, Ritchie, J, Rosta, E, Sherrill, C. D, Simmonett. A. C, Subotnik, J. E, Woodcock, H. L, III; Zhang, W, Bell, A. T, Chakraborty, A. K, Chipman, D. M, Keil, F. J, Warshel, A, Hehre, W. J, Schaefer, H. F, Kong, J, Krylov, A. I, Gill, P. M. W, Head-Gordon, M
-
Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Hunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W. Z.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett. A. C.; Subotnik, J. E.; Woodcock, H. L., III; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 3172.
-
-
-
-
20
-
-
51549089711
-
-
Wu, X.; Davis, A. P.; Fry, A. J. Org. Lett. 2007, 9, 5633-5636.
-
(2007)
Org. Lett
, vol.9
, pp. 5633-5636
-
-
Wu, X.1
Davis, A.P.2
Fry, A.J.3
-
21
-
-
51549105653
-
-
That the second wave in each voltammogram corresponds to the products was confirmed by overlaying the curves of products with the curves shown in Figure 2
-
(a) That the second wave in each voltammogram corresponds to the products was confirmed by overlaying the curves of products with the curves shown in Figure 2.
-
-
-
-
22
-
-
51549115377
-
-
Notice the broad, ill-defined nature of the voltammograms, independent of whether the benzyloxy groups was present or absent
-
(b) Notice the broad, ill-defined nature of the voltammograms, independent of whether the benzyloxy groups was present or absent.
-
-
-
-
23
-
-
0001126489
-
-
Consideration of the Nernst equation reveals how this is so. Thus, the faster the rate of the process that follows the initial redox equilibrium, the larger will be the factor that is subtracted. The consequence, of course, is to make easier the redox process being studied. For a beautiful example of these thoughts and their consequences, refer to: Moeller, K. D, Tinao, L. V. J. Am. Chem. Soc. 1992, 114, 1033-1041
-
Consideration of the Nernst equation reveals how this is so. Thus, the faster the rate of the process that follows the initial redox equilibrium, the larger will be the factor that is subtracted. The consequence, of course, is to make easier the redox process being studied. For a beautiful example of these thoughts and their consequences, refer to: Moeller, K. D.; Tinao, L. V. J. Am. Chem. Soc. 1992, 114, 1033-1041.
-
-
-
-
25
-
-
0025367226
-
-
(b) Yoshida, J-I.; Maekawa, T.; Murata, T.; Matsunaga, S-i.; Ism, S. J. Am. Chem. Soc. 1990, 112, 1962-1970.
-
(1990)
J. Am. Chem. Soc
, vol.112
, pp. 1962-1970
-
-
Yoshida, J.-I.1
Maekawa, T.2
Murata, T.3
Matsunaga, S.-I.4
Ism, S.5
-
27
-
-
51549090308
-
-
The broad, ill-defined nature of the voltammograms is reminiscent of the lack of definition that is often encountered in ultraviolet absorption spectra
-
The broad, ill-defined nature of the voltammograms is reminiscent of the lack of definition that is often encountered in ultraviolet absorption spectra.
-
-
-
-
29
-
-
0001460044
-
-
(b) Sriraman, M. C.; Nagasampagi, B. A.; Pandey, R. C.; Dev, S. Tetrahedron 1973, 29, 985-991.
-
(1973)
Tetrahedron
, vol.29
, pp. 985-991
-
-
Sriraman, M.C.1
Nagasampagi, B.A.2
Pandey, R.C.3
Dev, S.4
-
30
-
-
0342904422
-
-
(c) Audenaert, F.; Keukeleire, D. D.; Vandewalle, M. Tetrahedron 1987, 43, 5593-5604.
-
(1987)
Tetrahedron
, vol.43
, pp. 5593-5604
-
-
Audenaert, F.1
Keukeleire, D.D.2
Vandewalle, M.3
-
32
-
-
0001326370
-
-
(e) Seto, H.; Fujimoto, Y.; Tatsuno, T.; Yoshioka, H. Synth. Commun. 1985, 15, 1217-1224.
-
(1985)
Synth. Commun
, vol.15
, pp. 1217-1224
-
-
Seto, H.1
Fujimoto, Y.2
Tatsuno, T.3
Yoshioka, H.4
|