-
1
-
-
20344396374
-
-
Gerken, J. B.; Wang, S. C.; Preciado, A. B.; Park, Y. S.; Nishiguchi, G.; Tantillo, D. J.; Little, R. D. J. Org. Chem. 2005, 70, 4598-4608.
-
(2005)
J. Org. Chem
, vol.70
, pp. 4598-4608
-
-
Gerken, J.B.1
Wang, S.C.2
Preciado, A.B.3
Park, Y.S.4
Nishiguchi, G.5
Tantillo, D.J.6
Little, R.D.7
-
3
-
-
2742569677
-
-
For a review concerning the interaction of silicon with positively charged carbon at the α, β, γ, and δ positions, see
-
(a) For a review concerning the interaction of silicon with positively charged carbon at the α, β, γ, and δ positions, see: Lambert, J. B. Tetrahedron 1990, 46, 2677-2689.
-
(1990)
Tetrahedron
, vol.46
, pp. 2677-2689
-
-
Lambert, J.B.1
-
4
-
-
0346363144
-
-
reports a novel silicon γ-aryl effect upon redox potential
-
(b) Kaimakliotis, C; Fry, A. J. J. Org. Chem. 2003, 68, 9893-9898; reports a novel silicon γ-aryl effect upon redox potential.
-
(2003)
J. Org. Chem
, vol.68
, pp. 9893-9898
-
-
Kaimakliotis, C.1
Fry, A.J.2
-
5
-
-
33748336920
-
-
See, for example, the structures shown in
-
See, for example, the structures shown in: Wilson, R. M.; Danishefsky, S. J. Acc. Chem. Res. 2006, 39, 539-549.
-
(2006)
Acc. Chem. Res
, vol.39
, pp. 539-549
-
-
Wilson, R.M.1
Danishefsky, S.J.2
-
6
-
-
33646941664
-
-
For example, see: a
-
For example, see: (a) Cossy, J.; Belotti, D. Tetrahedron 2006, 62, 6459-6470;
-
(2006)
Tetrahedron
, vol.62
, pp. 6459-6470
-
-
Cossy, J.1
Belotti, D.2
-
7
-
-
34250156833
-
-
Floreancig, P. E. Tetrahedron 2006, 62, 6447-6594 (Symposium-in-Print Number 121).
-
Floreancig, P. E. Tetrahedron 2006, 62, 6447-6594 (Symposium-in-Print Number 121).
-
-
-
-
9
-
-
34250171523
-
-
Moss, R. A, Platz, M. S, Jones, M, Jr, Eds, John Wiley & Sons: New York, Chapter 6, pp
-
(c) Roth, H. D. In Reactive Intermediate Chemistry; Moss, R. A., Platz, M. S., Jones, M., Jr., Eds.; John Wiley & Sons: New York, 2004; Chapter 6, pp 205-272.
-
(2004)
Reactive Intermediate Chemistry
, pp. 205-272
-
-
Roth, H.D.1
-
11
-
-
33747142714
-
-
(e) Rinderhagen, H.; Waske, P. A.; Mattay, J. Tetrahedron 2006, 62, 6589-6593.
-
(2006)
Tetrahedron
, vol.62
, pp. 6589-6593
-
-
Rinderhagen, H.1
Waske, P.A.2
Mattay, J.3
-
12
-
-
0029864378
-
-
(f) Adam, W.; Corma, A.; Miranda, M. A.; Sabater-Picot, M.-J.; Sahin, C. J. Am. Chem. Soc. 1996, 118, 2380-2386.
-
(1996)
J. Am. Chem. Soc
, vol.118
, pp. 2380-2386
-
-
Adam, W.1
Corma, A.2
Miranda, M.A.3
Sabater-Picot, M.-J.4
Sahin, C.5
-
13
-
-
0034640849
-
-
(g) Booker-Milburn, K. I.; Cox, B.; Grady, M.; Halley, F.; Marrison, S. Tetrahedron Lett. 2000, 41, 4651-4655.
-
(2000)
Tetrahedron Lett
, vol.41
, pp. 4651-4655
-
-
Booker-Milburn, K.I.1
Cox, B.2
Grady, M.3
Halley, F.4
Marrison, S.5
-
14
-
-
0033592855
-
-
(h) Takemoto, Y.; Furuse, S.-I.; Hayase, H.; Echigo, T.; Iwata, C.; Tanaka, T.; Ibuka, T. Chem. Commun. 1999, 2515-2516.
-
(1999)
Chem. Commun
, pp. 2515-2516
-
-
Takemoto, Y.1
Furuse, S.-I.2
Hayase, H.3
Echigo, T.4
Iwata, C.5
Tanaka, T.6
Ibuka, T.7
-
15
-
-
0344901362
-
-
(i) Bauld, N. L.; Bellville, D. J.; Harirchian, B.; Lorenz, K. T.; Pabon, R. A., Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H. S.; Marsh, B. K. Acc. Chem. Res. 1987, 20, 371-378.
-
(1987)
Acc. Chem. Res
, vol.20
, pp. 371-378
-
-
Bauld, N.L.1
Bellville, D.J.2
Harirchian, B.3
Lorenz, K.T.4
Pabon Jr., R.A.5
Reynolds, D.W.6
Wirth, D.D.7
Chiou, H.S.8
Marsh, B.K.9
-
20
-
-
84957297219
-
-
(e) Dapperheld, S.; Steckhan, E.; Brinkhaus, K. H. G.; Esch, T. Chem. Ber. 1991, 124, 2557-2567.
-
(1991)
Chem. Ber
, vol.124
, pp. 2557-2567
-
-
Dapperheld, S.1
Steckhan, E.2
Brinkhaus, K.H.G.3
Esch, T.4
-
21
-
-
25444450361
-
-
Miranda, J.; Wade, C.; Little, R. D. J. Org. Chem. 2005, 70, 8017-8026.
-
(2005)
J. Org. Chem
, vol.70
, pp. 8017-8026
-
-
Miranda, J.1
Wade, C.2
Little, R.D.3
-
23
-
-
34250180325
-
-
All calculations performed at UCSB used the SPARTAN '04 Macintosh software package, while those performed at UCD used the GAUSSIAN03 suite of programs (Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2003).
-
(a) All calculations performed at UCSB used the SPARTAN '04 Macintosh software package, while those performed at UCD used the GAUSSIAN03 suite of programs (Frisch, M. J.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2003).
-
-
-
-
24
-
-
34250174917
-
-
Geometries and HOMO energies for the systems illustrated in Table 1 were calculated at the HF/3-21G(d), HF/6-31G(d), and B3LYP/6-31G(d) levels of theory. The trends in HOMO energies vary slightly with different levels of theory, but in a manner that does not change any of our conclusions. See Supporting Information for additional details on all of these calculations, including pictures of the computed HOMOs.
-
(b) Geometries and HOMO energies for the systems illustrated in Table 1 were calculated at the HF/3-21G(d), HF/6-31G(d), and B3LYP/6-31G(d) levels of theory. The trends in HOMO energies vary slightly with different levels of theory, but in a manner that does not change any of our conclusions. See Supporting Information for additional details on all of these calculations, including pictures of the computed HOMOs.
-
-
-
-
27
-
-
0043049157
-
Electrogenerated Reagents
-
4th ed, Lund, H, Hammerich, O, Eds, Marcel Dekker: New York, Chapter 29
-
(b) Simonet, J.; Pilard, J.-F. Electrogenerated Reagents. In Organic Electrochemistry, 4th ed.; Lund, H., Hammerich, O., Eds.; Marcel Dekker: New York, 2001; Chapter 29.
-
(2001)
Organic Electrochemistry
-
-
Simonet, J.1
Pilard, J.-F.2
-
29
-
-
34250199140
-
-
The use of 20 mol, of the mediator leads to a significant rate increase, thereby allowing the complete consumption of the starting material in 2 h or less
-
The use of 20 mol % of the mediator leads to a significant rate increase, thereby allowing the complete consumption of the starting material in 2 h or less.
-
-
-
-
30
-
-
34250196249
-
-
Interestingly, GCMS analysis shows that heating 18 to 300°C for 20 min affords both regioisomers. In the thermal process, the major product corresponds to the isomer that is not observed electrochemically.
-
Interestingly, GCMS analysis shows that heating 18 to 300°C for 20 min affords both regioisomers. In the thermal process, the major product corresponds to the isomer that is not observed electrochemically.
-
-
-
-
31
-
-
0000189651
-
-
Geometries for structures involved in the rearrangement were optimized using the B3LYP/6-31G(d) method Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652;
-
Geometries for structures involved in the rearrangement were optimized using the B3LYP/6-31G(d) method (Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652;
-
-
-
-
33
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789;
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
34
-
-
33751157732
-
-
on a model system with the benzyl group replaced by a methyl group
-
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627) on a model system with the benzyl group replaced by a methyl group.
-
(1994)
J. Phys. Chem
, vol.98
, pp. 11623-11627
-
-
Stephens, P.J.1
Devlin, F.J.2
Chabalowski, C.F.3
Frisch, M.J.4
-
35
-
-
33750614386
-
-
All structures were characterized by frequency calculations. Intrinsic reaction coordinate (IRC) calculations Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-5527;
-
All structures were characterized by frequency calculations. Intrinsic reaction coordinate (IRC) calculations (Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-5527;
-
-
-
-
36
-
-
33751044609
-
-
Fukui, K. Acc. Chem. Res. 1981, 14, 363-368 were also used to characterize transition structures. Note that, as a test of this methodology, we attempted to predict the major product without prior knowledge of the experimental result; in this case, the prediction proved to be correct.
-
Fukui, K. Acc. Chem. Res. 1981, 14, 363-368) were also used to characterize transition structures. Note that, as a test of this methodology, we attempted to predict the major product without prior knowledge of the experimental result; in this case, the prediction proved to be correct.
-
-
-
-
37
-
-
36549094556
-
-
CCSD/6-31G(d) (Scuseria, G. E.; Schaefer, H. F., III. J. Chem. Phys. 1989, 90, 3700-3703) single point calculations were also performed. See Supporting Information for additional details.
-
CCSD/6-31G(d) (Scuseria, G. E.; Schaefer, H. F., III. J. Chem. Phys. 1989, 90, 3700-3703) single point calculations were also performed. See Supporting Information for additional details.
-
-
-
-
38
-
-
34250202339
-
-
Stabilization of an incipient or fully formed cation (or radical) could also be achieved through participation by the ether oxygen. We have no evidence to favor or disfavor this possibility
-
Stabilization of an incipient or fully formed cation (or radical) could also be achieved through participation by the ether oxygen. We have no evidence to favor or disfavor this possibility.
-
-
-
|