-
1
-
-
11644279337
-
-
0022-2488 10.1063/1.1703954.
-
R. J. Glauber, J. Math. Phys. 0022-2488 10.1063/1.1703954 4, 294 (1963).
-
(1963)
J. Math. Phys.
, vol.4
, pp. 294
-
-
Glauber, R.J.1
-
2
-
-
0001946235
-
-
0003-4916 10.1016/0003-4916(71)90162-X.
-
J. S. Langer, Ann. Phys. (N.Y.) 0003-4916 10.1016/0003-4916(71)90162-X 65, 53 (1971).
-
(1971)
Ann. Phys. (N.Y.)
, vol.65
, pp. 53
-
-
Langer, J.S.1
-
6
-
-
0003423226
-
-
edited by H. Grabert and M. H. Devoret (Plenum, New York).
-
Single Charge Tunneling, edited by, H. Grabert, and, M. H. Devoret, (Plenum, New York, 1992).
-
(1992)
Single Charge Tunneling
-
-
-
7
-
-
0033116184
-
-
0018-9219 10.1109/5.752518.
-
K. K. Likharev, Proc. IEEE 0018-9219 10.1109/5.752518 87, 606 (1999).
-
(1999)
Proc. IEEE
, vol.87
, pp. 606
-
-
Likharev, K.K.1
-
8
-
-
0037533867
-
-
0002-7863 10.1021/ja0349305.
-
B. M. Quinn, P. Liljeroth, V. Ruiz, T. Laaksonen, and K. Kontturi, J. Am. Chem. Soc. 0002-7863 10.1021/ja0349305 125, 6644 (2003).
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 6644
-
-
Quinn, B.M.1
Liljeroth, P.2
Ruiz, V.3
Laaksonen, T.4
Kontturi, K.5
-
9
-
-
33644775790
-
-
1359-7345.
-
E. Katz, O. Lioubashevski, and I. Willner, Chem. Commun. (Cambridge) 1359-7345, 2006, 1109.
-
Chem. Commun. (Cambridge)
, vol.2006
, pp. 1109
-
-
Katz, E.1
Lioubashevski, O.2
Willner, I.3
-
11
-
-
0000787592
-
-
0163-1829 10.1103/PhysRevB.43.1146.
-
M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker, and R. C. Jaklevic, Phys. Rev. B 0163-1829 10.1103/PhysRevB.43.1146 43, 1146 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 1146
-
-
Amman, M.1
Wilkins, R.2
Ben-Jacob, E.3
Maker, P.D.4
Jaklevic, R.C.5
-
12
-
-
0002920630
-
-
0163-1829 10.1103/PhysRevB.37.98.
-
K. Mullen, E. Ben-Jacob, R. C. Jaklevic, and Z. Schuss, Phys. Rev. B 0163-1829 10.1103/PhysRevB.37.98 37, 98 (1988).
-
(1988)
Phys. Rev. B
, vol.37
, pp. 98
-
-
Mullen, K.1
Ben-Jacob, E.2
Jaklevic, R.C.3
Schuss, Z.4
-
15
-
-
13744260526
-
-
0021-8979 10.1063/1.1843271.
-
Y. Ono, A. Fujiwara, K. Nishiguchi, H. Inokawa, and Y. Takahashi, J. Appl. Phys. 0021-8979 10.1063/1.1843271 97, 031101 (2005).
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 031101
-
-
Ono, Y.1
Fujiwara, A.2
Nishiguchi, K.3
Inokawa, H.4
Takahashi, Y.5
-
16
-
-
50849087923
-
-
edited by R. Waser (Wiley, Weinheim)
-
K. Uchida, in Nanoelectronics and Information Technology, edited by, R. Waser, (Wiley, Weinheim, 2003), pp. 426-443.
-
(2003)
Nanoelectronics and Information Technology
, pp. 426-443
-
-
Uchida, K.1
-
17
-
-
35148873079
-
-
0034-6861 10.1103/RevModPhys.79.1217.
-
R. Hanson, L. P. Kouwenhoven, J. R. Petha, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 0034-6861 10.1103/RevModPhys.79.1217 79, 1217 (2007).
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1217
-
-
Hanson, R.1
Kouwenhoven, L.P.2
Petha, J.R.3
Tarucha, S.4
Vandersypen, L.M.K.5
-
18
-
-
21544465440
-
-
0021-8979 10.1063/1.352206.
-
J. R. Tucker, J. Appl. Phys. 0021-8979 10.1063/1.352206 72, 4399 (1992).
-
(1992)
J. Appl. Phys.
, vol.72
, pp. 4399
-
-
Tucker, J.R.1
-
19
-
-
50849114739
-
-
Note however that the design of Tucker determines the output by measuring the voltage and so it is dissipative only during the switching.
-
Note however that the design of Tucker determines the output by measuring the voltage and so it is dissipative only during the switching.
-
-
-
-
21
-
-
0035875325
-
-
0021-9606 10.1063/1.1372765.
-
F. Remacle and R. D. Levine, J. Chem. Phys. 0021-9606 10.1063/1.1372765 114, 10239 (2001).
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 10239
-
-
Remacle, F.1
Levine, R.D.2
-
22
-
-
33645302631
-
-
1050-2947 10.1103/PhysRevA.73.033820.
-
F. Remacle and R. D. Levine, Phys. Rev. A 1050-2947 10.1103/PhysRevA.73. 033820 73, 033820 (2006).
-
(2006)
Phys. Rev. A
, vol.73
, pp. 033820
-
-
Remacle, F.1
Levine, R.D.2
-
24
-
-
37449013696
-
-
0009-2614
-
O. Kuznetz, H. Salman, N. Shakkour, Y. Eichen, and S. Speiser, Chem. Phys. Lett. 451, 63 (2008). 0009-2614
-
(2008)
Chem. Phys. Lett.
, vol.451
, pp. 63
-
-
Kuznetz, O.1
Salman, H.2
Shakkour, N.3
Eichen, Y.4
Speiser, S.5
-
27
-
-
43149087515
-
-
0301-0104 10.1016/j.chemphys.2008.01.015.
-
E. Torres, K. L. Kompa, F. Remacle, and R. D. Levine, Chem. Phys. 0301-0104 10.1016/j.chemphys.2008.01.015 347, 531 (2008).
-
(2008)
Chem. Phys.
, vol.347
, pp. 531
-
-
Torres, E.1
Kompa, K.L.2
Remacle, F.3
Levine, R.D.4
-
28
-
-
50849122250
-
-
kB T e2 /2C, where kB is Boltzmann's constant and C is the capacity. Roughly, T (in K) 103 /C (in aF) and dots with capacity of an attofarad (= 10-18 F) or below are currently available.
-
kB T e2 /2C, where kB is Boltzmann's constant and C is the capacity. Roughly, T (in K) 103 /C (in aF) and dots with capacity of an attofarad (= 10-18 F) or below are currently available.
-
-
-
-
29
-
-
50849127047
-
-
The discharge rate that has a threshold at 3e/2C is the discharge of the dot from the charge state N=2 to the state N=1. The discharge of N=1 state (solid line in Fig.), is possible only for a voltage below e/2C.
-
The discharge rate that has a threshold at 3e/2C is the discharge of the dot from the charge state N=2 to the state N=1. The discharge of N=1 state (solid line in Fig.), is possible only for a voltage below e/2C.
-
-
-
-
30
-
-
0001630171
-
-
0031-9007 10.1103/PhysRevLett.59.109.
-
T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.59.109 59, 109 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 109
-
-
Fulton, T.A.1
Dolan, G.J.2
-
31
-
-
0000394227
-
-
0163-1829 10.1103/PhysRevB.44.5919.
-
A. E. Hanna and M. Tinkham, Phys. Rev. B 0163-1829 10.1103/PhysRevB.44. 5919 44, 5919 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 5919
-
-
Hanna, A.E.1
Tinkham, M.2
-
32
-
-
0000001145
-
-
0028-0836 10.1038/379413a0.
-
R. C. Ashoori, Nature (London) 0028-0836 10.1038/379413a0 379, 413 (1996).
-
(1996)
Nature (London)
, vol.379
, pp. 413
-
-
Ashoori, R.C.1
-
33
-
-
0002747118
-
-
0031-9228 10.1063/1.881371 (1).
-
M. A. Kastner, Phys. Today 0031-9228 10.1063/1.881371 46 (1), 24 (1993).
-
(1993)
Phys. Today
, vol.46
, pp. 24
-
-
Kastner, M.A.1
-
34
-
-
50849143714
-
-
An ampere is roughly a flow of 1019 electrons per second. A current of a picoampere lasting for a nanosecond corresponds to an average population loss of one dot in a hundred.
-
An ampere is roughly a flow of 1019 electrons per second. A current of a picoampere lasting for a nanosecond corresponds to an average population loss of one dot in a hundred.
-
-
-
-
35
-
-
34948833563
-
-
1530-6984 10.1021/nl071376e.
-
M. Klein, S. Rogge, F. Remacle, and R. D. Levine, Nano Lett. 1530-6984 10.1021/nl071376e 7, 2795 (2007).
-
(2007)
Nano Lett.
, vol.7
, pp. 2795
-
-
Klein, M.1
Rogge, S.2
Remacle, F.3
Levine, R.D.4
-
36
-
-
50849104688
-
-
What determines the possible value of the resistance is that the low leakage current is measurable by the available technology and is above the noise level set by the thermal fluctuations.
-
What determines the possible value of the resistance is that the low leakage current is measurable by the available technology and is above the noise level set by the thermal fluctuations.
-
-
-
-
37
-
-
34948871119
-
-
1530-6984 10.1021/nl0621037.
-
A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. Bakkers, and L. P. Kouwenhoven, Nano Lett. 1530-6984 10.1021/nl0621037 7, 2559 (2007).
-
(2007)
Nano Lett.
, vol.7
, pp. 2559
-
-
Bleszynski, A.C.1
Zwanenburg, F.A.2
Westervelt, R.M.3
Roest, A.L.4
Bakkers, E.5
Kouwenhoven, L.P.6
-
38
-
-
0000252507
-
-
0163-1829 10.1103/PhysRevB.56.9829.
-
D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B 0163-1829 10.1103/PhysRevB.56.9829 56, 9829 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 9829
-
-
Porath, D.1
Levi, Y.2
Tarabiah, M.3
Millo, O.4
-
39
-
-
0345489075
-
-
0953-8984 10.1088/0953-8984/15/12/201.
-
R. I. Shekhter, Y. Galperin, L. Y. Gorelik, A. Isacsson, and M. Jonson, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/15/12/201 15, R441 (2003).
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 441
-
-
Shekhter, R.I.1
Galperin, Y.2
Gorelik, L.Y.3
Isacsson, A.4
Jonson, M.5
-
40
-
-
2942583636
-
-
0031-9007 10.1103/PhysRevLett.92.166801.
-
D. Fedorets, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.92.166801 92, 166801 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 166801
-
-
Fedorets, D.1
Gorelik, L.Y.2
Shekhter, R.I.3
Jonson, M.4
-
41
-
-
50849126707
-
-
1546-1955.
-
R. I. Shekhter, L. Y. Gorelik, M. Jonson, Y. M. Galperin, and V. M. Vinokur, J. Comput. Theor. Nanosci. 1546-1955 4, 860 (2007).
-
(2007)
J. Comput. Theor. Nanosci.
, vol.4
, pp. 860
-
-
Shekhter, R.I.1
Gorelik, L.Y.2
Jonson, M.3
Galperin, Y.M.4
Vinokur, V.M.5
-
43
-
-
34948889901
-
-
1748-3387 10.1038/nnano.2007.302.
-
Y. J. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, Nat. Nanotechnol. 1748-3387 10.1038/nnano.2007.302 2, 622 (2007).
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 622
-
-
Hu, Y.J.1
Churchill, H.O.H.2
Reilly, D.J.3
Xiang, J.4
Lieber, C.M.5
Marcus, C.M.6
-
45
-
-
0003133883
-
-
edited by C. E. Shannon and J. McCarthy (Princeton University Press, Princeton)
-
J. v. Neumann, in Automata Studies, edited by, C. E. Shannon, and, J. McCarthy, (Princeton University Press, Princeton, 1956), pp. 43-98.
-
(1956)
Automata Studies
, pp. 43-98
-
-
Neumann, J.V.1
-
47
-
-
33645429016
-
-
0022-3654 10.1021/j100540a008.
-
D. T. Gillespie, J. Phys. Chem. 0022-3654 10.1021/j100540a008 81, 2340 (1977).
-
(1977)
J. Phys. Chem.
, vol.81
, pp. 2340
-
-
Gillespie, D.T.1
-
48
-
-
0000831872
-
-
0021-8979 10.1063/1.360752.
-
L. R. C. Fonseca, A. N. Korotkov, K. K. Likharev, and A. A. Odintsov, J. Appl. Phys. 0021-8979 10.1063/1.360752 78, 3238 (1995).
-
(1995)
J. Appl. Phys.
, vol.78
, pp. 3238
-
-
Fonseca, L.R.C.1
Korotkov, A.N.2
Likharev, K.K.3
Odintsov, A.A.4
|