메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Spectral latent variable models for perceptual inference

Author keywords

[No Author keywords available]

Indexed keywords

HUMAN MOTIONS; INTERNATIONAL CONFERENCES; LATENT VARIABLE MODELING;

EID: 50649103011     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2007.4408845     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 1
    • 24644444866 scopus 로고    scopus 로고
    • Available online at, 2003
    • CMU Human Motion Capture DataBase. Available online at http://mocap.cs.cmu.edu/search.html, 2003.
    • CMU Human Motion Capture DataBase
  • 2
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
    • M. Belkin and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In NIPS, 2002.
    • (2002) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 4344635655 scopus 로고    scopus 로고
    • Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps and Spectral Clustering
    • J. Bengio, J. Paiement, and P. Vincent. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps and Spectral Clustering. In NIPS, 2003.
    • (2003) NIPS
    • Bengio, J.1    Paiement, J.2    Vincent, P.3
  • 4
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • C. Bishop, M. Svensen, and C. K. I. Williams. Developments of the generative topographic mapping. Neurocomputing, (21):203-224, 1998.
    • (1998) Neurocomputing , vol.21 , pp. 203-224
    • Bishop, C.1    Svensen, M.2    Williams, C.K.I.3
  • 5
    • 0347963789 scopus 로고    scopus 로고
    • C. Bishop, M. Svensen, and C. K. I. Williams. Gtm: The generative topographic mapping. Neural Computation, (1):215-234, 1998.
    • C. Bishop, M. Svensen, and C. K. I. Williams. Gtm: The generative topographic mapping. Neural Computation, (1):215-234, 1998.
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 0037948870 scopus 로고    scopus 로고
    • Hessian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data
    • D. Donoho and C. Grimes. Hessian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data. Proc. Nat. Acad. Arts and Sciences, 2003.
    • (2003) Proc. Nat. Acad. Arts and Sciences
    • Donoho, D.1    Grimes, C.2
  • 9
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computation, (6):181-214, 1994.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 10
    • 50649104524 scopus 로고    scopus 로고
    • Sparse Spectral Latent Variable Models for Perceptual Inference
    • Technical Report DCS-TR-610, Rutgers University, February
    • A. Kanaujia, C. Sminchisescu, and D. Metaxas. Sparse Spectral Latent Variable Models for Perceptual Inference. Technical Report DCS-TR-610, Rutgers University, February 2007.
    • (2007)
    • Kanaujia, A.1    Sminchisescu, C.2    Metaxas, D.3
  • 11
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear component analysis with gaussian process latent variable models
    • N. Lawrence. Probabilistic non-linear component analysis with gaussian process latent variable models. JMLR, (6):1783-1816, 2005.
    • (2005) JMLR , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 12
    • 50649108068 scopus 로고    scopus 로고
    • Monocular Tracking of 3D Human Motion with a Coordianted Mixture of Factor Analyzers
    • R. Li, M. Yang, S. Sclaroff, and T. Tian. Monocular Tracking of 3D Human Motion with a Coordianted Mixture of Factor Analyzers. In ECCV, 2006.
    • (2006) ECCV
    • Li, R.1    Yang, M.2    Sclaroff, S.3    Tian, T.4
  • 13
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2), 2004.
    • (2004) IJCV , vol.60 , Issue.2
    • Lowe, D.1
  • 14
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of Approximate Methods for Handling Hyperparameters
    • D. Mackay. Comparison of Approximate Methods for Handling Hyperparameters. Neural Computation, 11(5), 1998.
    • (1998) Neural Computation , vol.11 , Issue.5
    • Mackay, D.1
  • 15
    • 33749261821 scopus 로고    scopus 로고
    • Kernel Information Embeddings
    • R. Memisevic. Kernel Information Embeddings. In ICML, 2006.
    • (2006) ICML
    • Memisevic, R.1
  • 16
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000.
    • (2000) Science
    • Roweis, S.1    Saul, L.2
  • 17
    • 14344249522 scopus 로고    scopus 로고
    • Generative Modeling for Continuous Non-Linearly Embedded Visual Inference
    • Banff
    • C. Sminchisescu and A. Jepson. Generative Modeling for Continuous Non-Linearly Embedded Visual Inference. In ICML, pages 759-766, Banff, 2004.
    • (2004) ICML , pp. 759-766
    • Sminchisescu, C.1    Jepson, A.2
  • 18
    • 24644445659 scopus 로고    scopus 로고
    • Discriminative Density Propagation for 3D Human Motion Estimation
    • C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative Density Propagation for 3D Human Motion Estimation. In CVPR, volume 1, pages 390-397, 2005.
    • (2005) CVPR , vol.1 , pp. 390-397
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Metaxas, D.4
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A Global Geometric Framewok for Nonlinear Dimensionality Reduction
    • J. Tenenbaum, V. Silva, and J. Langford. A Global Geometric Framewok for Nonlinear Dimensionality Reduction. Science, 2000.
    • (2000) Science
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 20
    • 0004191977 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • M. Tipping. Mixtures of probabilistic principal component analysers. Neural Computation, 1998.
    • (1998) Neural Computation
    • Tipping, M.1
  • 21
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the Relevance Vector Machine
    • M. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. JMLR, 2001.
    • (2001) JMLR
    • Tipping, M.1
  • 22
    • 33745823422 scopus 로고    scopus 로고
    • Priors for people tracking in small training sets
    • R. Urtasun, D. Fleet, A. Hertzmann, and P. Fua. Priors for people tracking in small training sets. In ICCV, 2005.
    • (2005) ICCV
    • Urtasun, R.1    Fleet, D.2    Hertzmann, A.3    Fua, P.4
  • 23
    • 5044226695 scopus 로고    scopus 로고
    • Unsupervised Learning of Image Manifolds by Semidefinite Programming
    • K. Weinberger and L. Saul. Unsupervised Learning of Image Manifolds by Semidefinite Programming. In CVPR, 2004.
    • (2004) CVPR
    • Weinberger, K.1    Saul, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.