-
1
-
-
0000461055
-
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
-
Ball J.M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2) 28 112 (1977) 473-486
-
(1977)
Quart. J. Math. Oxford Ser. (2)
, vol.28
, Issue.112
, pp. 473-486
-
-
Ball, J.M.1
-
2
-
-
84990610650
-
A rescaling algorithm for the numerical calculation of blowing-up solutions
-
Berger M., and Kohn R.V. A rescaling algorithm for the numerical calculation of blowing-up solutions. Comm. Pure Appl. Math. 41 6 (1988) 841-863
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, Issue.6
, pp. 841-863
-
-
Berger, M.1
Kohn, R.V.2
-
3
-
-
0000877190
-
Universality in blow-up for nonlinear heat equations
-
Bricmont J., and Kupiainen A. Universality in blow-up for nonlinear heat equations. Nonlinearity 7 2 (1994) 539-575
-
(1994)
Nonlinearity
, vol.7
, Issue.2
, pp. 539-575
-
-
Bricmont, J.1
Kupiainen, A.2
-
4
-
-
33644914522
-
Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation
-
(electronic)
-
Budd C.J., Rottschäfer V., and Williams J.F. Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation. SIAM J. Appl. Dyn. Syst. 4 3 (2005) 649-678 (electronic)
-
(2005)
SIAM J. Appl. Dyn. Syst.
, vol.4
, Issue.3
, pp. 649-678
-
-
Budd, C.J.1
Rottschäfer, V.2
Williams, J.F.3
-
5
-
-
5444256656
-
Semilinear Schrödinger Equations
-
New York Univ. Courant Inst. Math. Sci., New York
-
Cazenave T. Semilinear Schrödinger Equations. Courant Lect. Notes Math. vol. 10 (2003), New York Univ. Courant Inst. Math. Sci., New York
-
(2003)
Courant Lect. Notes Math.
, vol.10
-
-
Cazenave, T.1
-
6
-
-
0000967970
-
Weak and strong solutions of the complex Ginzburg-Landau equation
-
Doering C.R., Gibbon J.D., and Levermore C.D. Weak and strong solutions of the complex Ginzburg-Landau equation. Phys. D 71 3 (1994) 285-318
-
(1994)
Phys. D
, vol.71
, Issue.3
, pp. 285-318
-
-
Doering, C.R.1
Gibbon, J.D.2
Levermore, C.D.3
-
7
-
-
84990575181
-
Nondegeneracy of blowup for semilinear heat equations
-
Giga Y., and Kohn R.V. Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math. 42 6 (1989) 845-884
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.6
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.V.2
-
8
-
-
0001203317
-
The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods
-
Ginibre J., and Velo G. The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods. Phys. D 95 3-4 (1996) 191-228
-
(1996)
Phys. D
, vol.95
, Issue.3-4
, pp. 191-228
-
-
Ginibre, J.1
Velo, G.2
-
9
-
-
0039768823
-
The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods
-
Ginibre J., and Velo G. The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods. Comm. Math. Phys. 187 1 (1997) 45-79
-
(1997)
Comm. Math. Phys.
, vol.187
, Issue.1
, pp. 45-79
-
-
Ginibre, J.1
Velo, G.2
-
10
-
-
0000781993
-
The complex Ginzburg-Landau equation as a model problem
-
Berkeley, CA, 1994, Amer. Math. Soc., Providence, RI
-
Levermore C.D., and Oliver M. The complex Ginzburg-Landau equation as a model problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations. Berkeley, CA, 1994 (1996), Amer. Math. Soc., Providence, RI 141-190
-
(1996)
Dynamical Systems and Probabilistic Methods in Partial Differential Equations
, pp. 141-190
-
-
Levermore, C.D.1
Oliver, M.2
-
12
-
-
7044224827
-
On nonexistence of type II blowup for a supercritical nonlinear heat equation
-
Matano H., and Merle F. On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57 11 (2004) 1494-1541
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, Issue.11
, pp. 1494-1541
-
-
Matano, H.1
Merle, F.2
-
13
-
-
84990556280
-
Solution of a nonlinear heat equation with arbitrarily given blow-up points
-
Merle F. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. 45 3 (1992) 263-300
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, Issue.3
, pp. 263-300
-
-
Merle, F.1
-
15
-
-
0032338170
-
Optimal estimates for blowup rate and behavior for nonlinear heat equations
-
Merle F., and Zaag H. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51 2 (1998) 139-196
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.2
, pp. 139-196
-
-
Merle, F.1
Zaag, H.2
-
16
-
-
0034407299
-
A Liouville theorem for vector-valued nonlinear heat equations and applications
-
Merle F., and Zaag H. A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316 1 (2000) 103-137
-
(2000)
Math. Ann.
, vol.316
, Issue.1
, pp. 103-137
-
-
Merle, F.1
Zaag, H.2
-
17
-
-
50649096681
-
-
N. Nouaili, A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations, J. Dynam. Differential Equations, 2008, in press
-
N. Nouaili, A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations, J. Dynam. Differential Equations, 2008, in press
-
-
-
-
18
-
-
50649087357
-
-
N. Nouaili, H. Zaag, A Liouville theorem for vector-valued semilinear heat equations with no gradient structure and applications to blow-up, Trans. Amer. Math. Soc. (2008), in press
-
N. Nouaili, H. Zaag, A Liouville theorem for vector-valued semilinear heat equations with no gradient structure and applications to blow-up, Trans. Amer. Math. Soc. (2008), in press
-
-
-
-
19
-
-
1542508686
-
Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain
-
Ogawa T., and Yokota T. Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain. Comm. Math. Phys. 245 1 (2004) 105-121
-
(2004)
Comm. Math. Phys.
, vol.245
, Issue.1
, pp. 105-121
-
-
Ogawa, T.1
Yokota, T.2
-
20
-
-
0035613474
-
On self-similar singular solutions of the complex Ginzburg-Landau equation
-
Plecháč P., and Šverák V. On self-similar singular solutions of the complex Ginzburg-Landau equation. Comm. Pure Appl. Math. 54 10 (2001) 1215-1242
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, Issue.10
, pp. 1215-1242
-
-
Plecháč, P.1
Šverák, V.2
-
21
-
-
0002216436
-
The cubic complex Ginzburg-Landau equation for a backward bifurcation
-
Popp S., Stiller O., Kuznetsov E., and Kramer L. The cubic complex Ginzburg-Landau equation for a backward bifurcation. Phys. D 114 1-2 (1998) 81-107
-
(1998)
Phys. D
, vol.114
, Issue.1-2
, pp. 81-107
-
-
Popp, S.1
Stiller, O.2
Kuznetsov, E.3
Kramer, L.4
-
22
-
-
17444413732
-
Numerical simulations of periodic travelling waves to a generalized Ginzburg-Landau equation
-
Tang Y. Numerical simulations of periodic travelling waves to a generalized Ginzburg-Landau equation. Appl. Math. Comput. 165 1 (2005) 155-161
-
(2005)
Appl. Math. Comput.
, vol.165
, Issue.1
, pp. 155-161
-
-
Tang, Y.1
-
23
-
-
0000201979
-
Blow-up results for vector-valued nonlinear heat equations with no gradient structure
-
Zaag H. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 5 (1998) 581-622
-
(1998)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.15
, Issue.5
, pp. 581-622
-
-
Zaag, H.1
|