메뉴 건너뛰기




Volumn 255, Issue 7, 2008, Pages 1613-1666

Blow-up profile for the complex Ginzburg-Landau equation

Author keywords

Blow up profile; Blow up solution; Complex Ginzburg Landau equation; Stability

Indexed keywords


EID: 50649090477     PISSN: 00221236     EISSN: 10960783     Source Type: Journal    
DOI: 10.1016/j.jfa.2008.03.008     Document Type: Article
Times cited : (73)

References (23)
  • 1
    • 0000461055 scopus 로고
    • Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
    • Ball J.M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford Ser. (2) 28 112 (1977) 473-486
    • (1977) Quart. J. Math. Oxford Ser. (2) , vol.28 , Issue.112 , pp. 473-486
    • Ball, J.M.1
  • 2
    • 84990610650 scopus 로고
    • A rescaling algorithm for the numerical calculation of blowing-up solutions
    • Berger M., and Kohn R.V. A rescaling algorithm for the numerical calculation of blowing-up solutions. Comm. Pure Appl. Math. 41 6 (1988) 841-863
    • (1988) Comm. Pure Appl. Math. , vol.41 , Issue.6 , pp. 841-863
    • Berger, M.1    Kohn, R.V.2
  • 3
    • 0000877190 scopus 로고
    • Universality in blow-up for nonlinear heat equations
    • Bricmont J., and Kupiainen A. Universality in blow-up for nonlinear heat equations. Nonlinearity 7 2 (1994) 539-575
    • (1994) Nonlinearity , vol.7 , Issue.2 , pp. 539-575
    • Bricmont, J.1    Kupiainen, A.2
  • 4
    • 33644914522 scopus 로고    scopus 로고
    • Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation
    • (electronic)
    • Budd C.J., Rottschäfer V., and Williams J.F. Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation. SIAM J. Appl. Dyn. Syst. 4 3 (2005) 649-678 (electronic)
    • (2005) SIAM J. Appl. Dyn. Syst. , vol.4 , Issue.3 , pp. 649-678
    • Budd, C.J.1    Rottschäfer, V.2    Williams, J.F.3
  • 5
    • 5444256656 scopus 로고    scopus 로고
    • Semilinear Schrödinger Equations
    • New York Univ. Courant Inst. Math. Sci., New York
    • Cazenave T. Semilinear Schrödinger Equations. Courant Lect. Notes Math. vol. 10 (2003), New York Univ. Courant Inst. Math. Sci., New York
    • (2003) Courant Lect. Notes Math. , vol.10
    • Cazenave, T.1
  • 6
    • 0000967970 scopus 로고
    • Weak and strong solutions of the complex Ginzburg-Landau equation
    • Doering C.R., Gibbon J.D., and Levermore C.D. Weak and strong solutions of the complex Ginzburg-Landau equation. Phys. D 71 3 (1994) 285-318
    • (1994) Phys. D , vol.71 , Issue.3 , pp. 285-318
    • Doering, C.R.1    Gibbon, J.D.2    Levermore, C.D.3
  • 7
    • 84990575181 scopus 로고
    • Nondegeneracy of blowup for semilinear heat equations
    • Giga Y., and Kohn R.V. Nondegeneracy of blowup for semilinear heat equations. Comm. Pure Appl. Math. 42 6 (1989) 845-884
    • (1989) Comm. Pure Appl. Math. , vol.42 , Issue.6 , pp. 845-884
    • Giga, Y.1    Kohn, R.V.2
  • 8
    • 0001203317 scopus 로고    scopus 로고
    • The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods
    • Ginibre J., and Velo G. The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods. Phys. D 95 3-4 (1996) 191-228
    • (1996) Phys. D , vol.95 , Issue.3-4 , pp. 191-228
    • Ginibre, J.1    Velo, G.2
  • 9
    • 0039768823 scopus 로고    scopus 로고
    • The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods
    • Ginibre J., and Velo G. The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods. Comm. Math. Phys. 187 1 (1997) 45-79
    • (1997) Comm. Math. Phys. , vol.187 , Issue.1 , pp. 45-79
    • Ginibre, J.1    Velo, G.2
  • 12
    • 7044224827 scopus 로고    scopus 로고
    • On nonexistence of type II blowup for a supercritical nonlinear heat equation
    • Matano H., and Merle F. On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57 11 (2004) 1494-1541
    • (2004) Comm. Pure Appl. Math. , vol.57 , Issue.11 , pp. 1494-1541
    • Matano, H.1    Merle, F.2
  • 13
    • 84990556280 scopus 로고
    • Solution of a nonlinear heat equation with arbitrarily given blow-up points
    • Merle F. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. 45 3 (1992) 263-300
    • (1992) Comm. Pure Appl. Math. , vol.45 , Issue.3 , pp. 263-300
    • Merle, F.1
  • 15
    • 0032338170 scopus 로고    scopus 로고
    • Optimal estimates for blowup rate and behavior for nonlinear heat equations
    • Merle F., and Zaag H. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math. 51 2 (1998) 139-196
    • (1998) Comm. Pure Appl. Math. , vol.51 , Issue.2 , pp. 139-196
    • Merle, F.1    Zaag, H.2
  • 16
    • 0034407299 scopus 로고    scopus 로고
    • A Liouville theorem for vector-valued nonlinear heat equations and applications
    • Merle F., and Zaag H. A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316 1 (2000) 103-137
    • (2000) Math. Ann. , vol.316 , Issue.1 , pp. 103-137
    • Merle, F.1    Zaag, H.2
  • 17
    • 50649096681 scopus 로고    scopus 로고
    • N. Nouaili, A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations, J. Dynam. Differential Equations, 2008, in press
    • N. Nouaili, A simplified proof of a Liouville theorem for nonnegative solution of a subcritical semilinear heat equations, J. Dynam. Differential Equations, 2008, in press
  • 18
    • 50649087357 scopus 로고    scopus 로고
    • N. Nouaili, H. Zaag, A Liouville theorem for vector-valued semilinear heat equations with no gradient structure and applications to blow-up, Trans. Amer. Math. Soc. (2008), in press
    • N. Nouaili, H. Zaag, A Liouville theorem for vector-valued semilinear heat equations with no gradient structure and applications to blow-up, Trans. Amer. Math. Soc. (2008), in press
  • 19
    • 1542508686 scopus 로고    scopus 로고
    • Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain
    • Ogawa T., and Yokota T. Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain. Comm. Math. Phys. 245 1 (2004) 105-121
    • (2004) Comm. Math. Phys. , vol.245 , Issue.1 , pp. 105-121
    • Ogawa, T.1    Yokota, T.2
  • 20
    • 0035613474 scopus 로고    scopus 로고
    • On self-similar singular solutions of the complex Ginzburg-Landau equation
    • Plecháč P., and Šverák V. On self-similar singular solutions of the complex Ginzburg-Landau equation. Comm. Pure Appl. Math. 54 10 (2001) 1215-1242
    • (2001) Comm. Pure Appl. Math. , vol.54 , Issue.10 , pp. 1215-1242
    • Plecháč, P.1    Šverák, V.2
  • 21
    • 0002216436 scopus 로고    scopus 로고
    • The cubic complex Ginzburg-Landau equation for a backward bifurcation
    • Popp S., Stiller O., Kuznetsov E., and Kramer L. The cubic complex Ginzburg-Landau equation for a backward bifurcation. Phys. D 114 1-2 (1998) 81-107
    • (1998) Phys. D , vol.114 , Issue.1-2 , pp. 81-107
    • Popp, S.1    Stiller, O.2    Kuznetsov, E.3    Kramer, L.4
  • 22
    • 17444413732 scopus 로고    scopus 로고
    • Numerical simulations of periodic travelling waves to a generalized Ginzburg-Landau equation
    • Tang Y. Numerical simulations of periodic travelling waves to a generalized Ginzburg-Landau equation. Appl. Math. Comput. 165 1 (2005) 155-161
    • (2005) Appl. Math. Comput. , vol.165 , Issue.1 , pp. 155-161
    • Tang, Y.1
  • 23
    • 0000201979 scopus 로고    scopus 로고
    • Blow-up results for vector-valued nonlinear heat equations with no gradient structure
    • Zaag H. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 5 (1998) 581-622
    • (1998) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.15 , Issue.5 , pp. 581-622
    • Zaag, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.