-
1
-
-
0000461055
-
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
-
J. BALL, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, Vol. 28, 1977, pp. 473-486.
-
(1977)
Quart. J. Math. Oxford
, vol.28
, pp. 473-486
-
-
Ball, J.1
-
2
-
-
84990610650
-
A rescaling algorithm for the numerical calculation of blowing-up solutions
-
M. BERGER and R. KOHN, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 841-863.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 841-863
-
-
Berger, M.1
Kohn, R.2
-
4
-
-
0000877190
-
Universality in blow-up for nonlinear heat equations
-
J. BRICMONT and A. KUPIAINEN, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7, 1994, pp. 539-575.
-
(1994)
Nonlinearity
, vol.7
, pp. 539-575
-
-
Bricmont, J.1
Kupiainen, A.2
-
6
-
-
0007452217
-
Modulation theory for the blowup of vector-valued nonlinear heat equations
-
S. FILIPPAS and F. MERLE, Modulation theory for the blowup of vector-valued nonlinear heat equations, J. Diff. Equations, Vol. 116, 1995, pp. 119-148.
-
(1995)
J. Diff. Equations
, vol.116
, pp. 119-148
-
-
Filippas, S.1
Merle, F.2
-
7
-
-
0011609560
-
On approximate self-similar solutions for some class of quasilinear heat equations with sources
-
V. A. GALAKTIONOV, S. P. KURDYUMOV and A. A. SAMARSKII, On approximate self-similar solutions for some class of quasilinear heat equations with sources, Math. USSR-Sb, Vol. 52, 1985, pp. 155-180.
-
(1985)
Math. USSR-Sb
, vol.52
, pp. 155-180
-
-
Galaktionov, V.A.1
Kurdyumov, S.P.2
Samarskii, A.A.3
-
8
-
-
0004528391
-
Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation
-
V. A. GALAKTIONOV and J. L. VAZQUEZ, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., Vol. 24, 1993, pp. 1254-1276.
-
(1993)
SIAM J. Math. Anal.
, vol.24
, pp. 1254-1276
-
-
Galaktionov, V.A.1
Vazquez, J.L.2
-
9
-
-
84990616610
-
Asymptotically self-similar blowup of semilinear heat equations
-
Y. GIGA and R. KOHN, Asymptotically self-similar blowup of semilinear heat equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.2
-
10
-
-
0000332576
-
Characterizing blowup using similarity variables
-
Y. GIGA and R. KOHN, Characterizing blowup using similarity variables, Indiana Univ. Math. J., Vol. 36, 1987, pp. 1-40.
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.2
-
11
-
-
84990575181
-
Nondegeneracy of blow-up for semilinear heat equations
-
Y. GIGA and R. KOHN, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.2
-
12
-
-
0001825291
-
-
Internat. Press, Cambridge
-
R. S., HAMILTON, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Internat. Press, Cambridge, 1995, pp. 7-136.
-
(1995)
The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry
, vol.2
, pp. 7-136
-
-
Hamilton, R.S.1
-
13
-
-
85011578583
-
Blow-up behavior of one-dimensional semilinear parabolic equations
-
M. A. HERRERO and J. J. L. VELAZQUEZ, Blow-up behavior of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poin- caré, Vol. 10, 1993, pp. 133-189.
-
(1993)
Ann. Inst. Henri Poin- Caré
, vol.10
, pp. 133-189
-
-
Herrero, M.A.1
Velazquez, J.J.L.2
-
14
-
-
84972492804
-
Flat blow-up in one-dimensional semilinear heat equations
-
M. A. HERRERO and J. J. L. VELAZQUEZ, Flat blow-up in one-dimensional semilinear heat equations, Differential and Integral eqns., Vol. 5, 1992, pp. 973-997.
-
(1992)
Differential and Integral Eqns.
, vol.5
, pp. 973-997
-
-
Herrero, M.A.1
Velazquez, J.J.L.2
-
15
-
-
0000781993
-
The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994)
-
Providence, RI
-
C. D. LEVERMORE and M. OLIVER, The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, 1994), Lectures in Appl. Math., Vol. 31, Amer. Math. Soc., Providence, RI, 1996, pp. 141-190.
-
(1996)
Lectures in Appl. Math., Vol. 31, Amer. Math. Soc.
, vol.31
, pp. 141-190
-
-
Levermore, C.D.1
Oliver, M.2
-
17
-
-
84990556280
-
Solution of a nonlinear heat equation with arbitrary given blow-up points
-
F. MERLE, Solution of a nonlinear heat equation with arbitrary given blow-up points. Comm. Pure Appl. Math., Vol. 45, 1992, pp. 263-300.
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 263-300
-
-
Merle, F.1
-
19
-
-
84968503478
-
Classification of singularities for blowing up solutions in higher dimensions
-
J. J. L. VELAZQUEZ, Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Vol. 338, 1993, pp. 441-464.
-
(1993)
Trans. Amer. Math. Soc.
, vol.338
, pp. 441-464
-
-
Velazquez, J.J.L.1
-
20
-
-
48549114032
-
Single-point blowup for a semilinear initial value problem
-
F. WEISSLER, Single-point blowup for a semilinear initial value problem, J. Diff. Equations, Vol. 55, 1984, pp. 204-224.
-
(1984)
J. Diff. Equations
, vol.55
, pp. 204-224
-
-
Weissler, F.1
|