-
1
-
-
0036013603
-
The world of the complex Ginzburg-Landau equation
-
I. S. ARANSON AND L. KRAMER, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 99-143.
-
(2002)
Rev. Modern Phys.
, vol.74
, pp. 99-143
-
-
Aranson, I.S.1
Kramer, L.2
-
2
-
-
0003553727
-
-
Cambridge University Press, Cambridge, UK
-
G. I. BARENBLATT, Scaling, Sell-Similarity and Intermediate Asymptotics, Cambridge University Press, Cambridge, UK, 1996.
-
(1996)
Scaling, Sell-similarity and Intermediate Asymptotics
-
-
Barenblatt, G.I.1
-
3
-
-
0040986225
-
Benjamir-Feir turbulence in convective binary fluid mixtures
-
H. R. BRAND, P. S. LOMDAHL, AND A. C. NEWELL, Benjamir-Feir turbulence in convective binary fluid mixtures, Phys. D, 23 (1986), pp. 345-362.
-
(1986)
Phys. D
, vol.23
, pp. 345-362
-
-
Brand, H.R.1
Lomdahl, P.S.2
Newell, A.C.3
-
4
-
-
0036304184
-
Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation
-
C. J. BUDD, Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation, SIAM J. Appl. Math., 62 (2001), pp. 801-830.
-
(2001)
SIAM J. Appl. Math.
, vol.62
, pp. 801-830
-
-
Budd, C.J.1
-
5
-
-
0001689908
-
New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations
-
C. J. BUDD, S. CHEN, AND R. D. RUSSELL, New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations, J. Comput. Phys., 152 (1999), pp. 756-789.
-
(1999)
J. Comput. Phys.
, vol.152
, pp. 756-789
-
-
Budd, C.J.1
Chen, S.2
Russell, R.D.3
-
6
-
-
0000458449
-
Moving mesh methods for problems with blow-up
-
C. J. BUDD, W. HUANG, AND R. D. RUSSELL, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput., 17 (1996), pp. 305-327.
-
(1996)
SIAM J. Sci. Comput.
, vol.17
, pp. 305-327
-
-
Budd, C.J.1
Huang, W.2
Russell, R.D.3
-
8
-
-
0347028241
-
On the nonlinear evolution of three-dimensional disturbances in plane Poiseuille flow
-
A. DAVEY, L. M. HOCKING, AND K. STEWARTSON, On the nonlinear evolution of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech., 63 (1974), pp. 529-536.
-
(1974)
J. Fluid Mech.
, vol.63
, pp. 529-536
-
-
Davey, A.1
Hocking, L.M.2
Stewartson, K.3
-
9
-
-
0000138938
-
Instabilities and transition in flow between concentric cylinders
-
Hydrodynamic Instabilities and the Transition to Turbulence, H. Swinney and J. Gollub, eds., Springer-Verlag, New York
-
R. C. DIPRIMA AND H. L. SWINNEY, Instabilities and transition in flow between concentric cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, H. Swinney and J. Gollub, eds., Topics in Applied Physics 45, Springer-Verlag, New York, 1981, pp. 139-180.
-
(1981)
Topics in Applied Physics
, vol.45
, pp. 139-180
-
-
Diprima, R.C.1
Swinney, H.L.2
-
10
-
-
0003487030
-
AUTO97: Continuation and bifurcation software for ordinary differential equations
-
Department of Computer Science, Concordia University, Montreal, Canada
-
E. J. DOEDEL, A. R. CHAMPNEYS, T. F. FAIRGRIEVE, Y. A. KUZNETSOV, B. SANDSTEDE, AND X.-J. WANG, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations, Tech. report, Department of Computer Science, Concordia University, Montreal, Canada, 1997, available at ftp://ftp.cs. concordia.ca/pub/doedel/auto.
-
(1997)
Tech. Report
-
-
Doedel, E.J.1
Champneys, A.R.2
Fairgrieve, T.F.3
Kuznetsov, Y.A.4
Sandstede, B.5
Wang, X.-J.6
-
11
-
-
0038938431
-
Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrödinger equation
-
G. FIBICH AND D. LEVY, Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrödinger equation, Phys. Lett. A, 249 (1998), pp. 286-294.
-
(1998)
Phys. Lett. A
, vol.249
, pp. 286-294
-
-
Fibich, G.1
Levy, D.2
-
12
-
-
0342647291
-
Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
-
G. FIBICH AND G. PAPANICOLAOU, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math., 60 (1999), pp. 183-240.
-
(1999)
SIAM J. Appl. Math.
, vol.60
, pp. 183-240
-
-
Fibich, G.1
Papanicolaou, G.2
-
13
-
-
0003236059
-
Solving ordinary differential equations I. Nonstiff problems, 2nd ed
-
Springer-Verlag
-
E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Springer Ser. Comput. Math. 8, Springer-Verlag, 1993, available at http://www.unigo.ch/rnath/folks/ hairer/software.html.
-
(1993)
Springer Ser. Comput. Math.
, vol.8
-
-
Hairer, E.1
Nørsett, S.P.2
Wanner, G.3
-
14
-
-
0000105971
-
Moving mesh methods based on moving mesh partial differential equations
-
W. HUANG, Y. REN, AND R. RUSSELL, Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys., 113 (1994), pp. 279-290.
-
(1994)
J. Comput. Phys.
, vol.113
, pp. 279-290
-
-
Huang, W.1
Ren, Y.2
Russell, R.3
-
15
-
-
0029394002
-
Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis
-
N. J. KOPELL AND M. LANDMAN, Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis, SIAM J. Appl. Math., 55 (1995), pp. 1297-1323.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 1297-1323
-
-
Kopell, N.J.1
Landman, M.2
-
17
-
-
67649370945
-
The Ginzburg-Landau equation in its role as a modulation equation
-
North-Holland, Amsterdam
-
A. MIELKE, The Ginzburg-Landau equation in its role as a modulation equation, in Handbook of Dynamical Systems 2, North-Holland, Amsterdam, 2002, pp. 759-834.
-
(2002)
Handbook of Dynamical Systems
, vol.2
, pp. 759-834
-
-
Mielke, A.1
-
18
-
-
0014662728
-
Finite bandwidth, finite amplitude convection
-
A. C. NEWELL AND J. A. WHITEHEAD, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 28 (1969), pp. 279-303.
-
(1969)
J. Fluid Mech.
, vol.28
, pp. 279-303
-
-
Newell, A.C.1
Whitehead, J.A.2
-
19
-
-
0035613474
-
On self-similar singular solutions of the complex Ginzburg-Landau equation
-
P. PLECHÁČ AND V. ŠVERÁK, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 54 (2001), pp. 1215-1242.
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 1215-1242
-
-
Plecháč, P.1
Šverák, V.2
-
20
-
-
0002626123
-
A hybrid method for nonlinear equations
-
P. Rabinowitz, ed., Gordon and Breach, New York
-
M. J. D. POWELL, A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, New York, 1988, pp. 87-114.
-
(1988)
Numerical Methods for Nonlinear Algebraic Equations
, pp. 87-114
-
-
Powell, M.J.D.1
-
21
-
-
0037091782
-
Blow-up in the nonlinear Schrödinger equation near critical dimension
-
V. ROTTSCHÄFER AND T. KAPER, Blow-up in the nonlinear Schrödinger equation near critical dimension, J. Math. Anal. Appl., 268 (2002), pp. 517-549.
-
(2002)
J. Math. Anal. Appl.
, vol.268
, pp. 517-549
-
-
Rottschäfer, V.1
Kaper, T.2
-
22
-
-
0242277031
-
Geometric theory for multi-bump, self-similar, blow-up solutions of the cubic nonlinear Schrödinger equation
-
V. ROTTSCHÄFER AND T. KAPER, Geometric theory for multi-bump, self-similar, blow-up solutions of the cubic nonlinear Schrödinger equation, Nonlinearity, 16 (2003), pp. 929-961.
-
(2003)
Nonlinearity
, vol.16
, pp. 929-961
-
-
Rottschäfer, V.1
Kaper, T.2
-
23
-
-
84959644006
-
A nonlinear instability theory for a wave system in plane Poiseuille flow
-
K. STEWARTSON AND J. STUART, A nonlinear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), pp. 529-545.
-
(1971)
J. Fluid Mech.
, vol.48
, pp. 529-545
-
-
Stewartson, K.1
Stuart, J.2
-
24
-
-
4344669019
-
The nonlinear schrödinger equation
-
Springer-Verlag, Berlin
-
C. SULEM AND P. L. SULEM, The Nonlinear Schrödinger Equation, Appl. Math. Sci. 139, Springer-Verlag, Berlin, 1999.
-
(1999)
Appl. Math. Sci.
, vol.139
-
-
Sulem, C.1
Sulem, P.L.2
|