메뉴 건너뛰기




Volumn 4, Issue 3, 2005, Pages 649-678

Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation

Author keywords

Asymptotic; Blow up; Complex Ginzburg Landau; Multibump solutions; Self similar

Indexed keywords

ALGEBRA; ASYMPTOTIC STABILITY;

EID: 33644914522     PISSN: 15360040     EISSN: 15360040     Source Type: Journal    
DOI: 10.1137/040610866     Document Type: Article
Times cited : (22)

References (24)
  • 1
    • 0036013603 scopus 로고    scopus 로고
    • The world of the complex Ginzburg-Landau equation
    • I. S. ARANSON AND L. KRAMER, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), pp. 99-143.
    • (2002) Rev. Modern Phys. , vol.74 , pp. 99-143
    • Aranson, I.S.1    Kramer, L.2
  • 3
    • 0040986225 scopus 로고
    • Benjamir-Feir turbulence in convective binary fluid mixtures
    • H. R. BRAND, P. S. LOMDAHL, AND A. C. NEWELL, Benjamir-Feir turbulence in convective binary fluid mixtures, Phys. D, 23 (1986), pp. 345-362.
    • (1986) Phys. D , vol.23 , pp. 345-362
    • Brand, H.R.1    Lomdahl, P.S.2    Newell, A.C.3
  • 4
    • 0036304184 scopus 로고    scopus 로고
    • Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation
    • C. J. BUDD, Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrödinger equation, SIAM J. Appl. Math., 62 (2001), pp. 801-830.
    • (2001) SIAM J. Appl. Math. , vol.62 , pp. 801-830
    • Budd, C.J.1
  • 5
    • 0001689908 scopus 로고    scopus 로고
    • New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations
    • C. J. BUDD, S. CHEN, AND R. D. RUSSELL, New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations, J. Comput. Phys., 152 (1999), pp. 756-789.
    • (1999) J. Comput. Phys. , vol.152 , pp. 756-789
    • Budd, C.J.1    Chen, S.2    Russell, R.D.3
  • 6
    • 0000458449 scopus 로고    scopus 로고
    • Moving mesh methods for problems with blow-up
    • C. J. BUDD, W. HUANG, AND R. D. RUSSELL, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput., 17 (1996), pp. 305-327.
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 305-327
    • Budd, C.J.1    Huang, W.2    Russell, R.D.3
  • 8
    • 0347028241 scopus 로고
    • On the nonlinear evolution of three-dimensional disturbances in plane Poiseuille flow
    • A. DAVEY, L. M. HOCKING, AND K. STEWARTSON, On the nonlinear evolution of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech., 63 (1974), pp. 529-536.
    • (1974) J. Fluid Mech. , vol.63 , pp. 529-536
    • Davey, A.1    Hocking, L.M.2    Stewartson, K.3
  • 9
    • 0000138938 scopus 로고
    • Instabilities and transition in flow between concentric cylinders
    • Hydrodynamic Instabilities and the Transition to Turbulence, H. Swinney and J. Gollub, eds., Springer-Verlag, New York
    • R. C. DIPRIMA AND H. L. SWINNEY, Instabilities and transition in flow between concentric cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, H. Swinney and J. Gollub, eds., Topics in Applied Physics 45, Springer-Verlag, New York, 1981, pp. 139-180.
    • (1981) Topics in Applied Physics , vol.45 , pp. 139-180
    • Diprima, R.C.1    Swinney, H.L.2
  • 10
    • 0003487030 scopus 로고    scopus 로고
    • AUTO97: Continuation and bifurcation software for ordinary differential equations
    • Department of Computer Science, Concordia University, Montreal, Canada
    • E. J. DOEDEL, A. R. CHAMPNEYS, T. F. FAIRGRIEVE, Y. A. KUZNETSOV, B. SANDSTEDE, AND X.-J. WANG, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations, Tech. report, Department of Computer Science, Concordia University, Montreal, Canada, 1997, available at ftp://ftp.cs. concordia.ca/pub/doedel/auto.
    • (1997) Tech. Report
    • Doedel, E.J.1    Champneys, A.R.2    Fairgrieve, T.F.3    Kuznetsov, Y.A.4    Sandstede, B.5    Wang, X.-J.6
  • 11
    • 0038938431 scopus 로고    scopus 로고
    • Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrödinger equation
    • G. FIBICH AND D. LEVY, Self-focusing in the complex Ginzburg-Landau limit of the critical nonlinear Schrödinger equation, Phys. Lett. A, 249 (1998), pp. 286-294.
    • (1998) Phys. Lett. A , vol.249 , pp. 286-294
    • Fibich, G.1    Levy, D.2
  • 12
    • 0342647291 scopus 로고    scopus 로고
    • Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
    • G. FIBICH AND G. PAPANICOLAOU, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math., 60 (1999), pp. 183-240.
    • (1999) SIAM J. Appl. Math. , vol.60 , pp. 183-240
    • Fibich, G.1    Papanicolaou, G.2
  • 13
    • 0003236059 scopus 로고
    • Solving ordinary differential equations I. Nonstiff problems, 2nd ed
    • Springer-Verlag
    • E. HAIRER, S. P. NØRSETT, AND G. WANNER, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Springer Ser. Comput. Math. 8, Springer-Verlag, 1993, available at http://www.unigo.ch/rnath/folks/ hairer/software.html.
    • (1993) Springer Ser. Comput. Math. , vol.8
    • Hairer, E.1    Nørsett, S.P.2    Wanner, G.3
  • 14
    • 0000105971 scopus 로고
    • Moving mesh methods based on moving mesh partial differential equations
    • W. HUANG, Y. REN, AND R. RUSSELL, Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys., 113 (1994), pp. 279-290.
    • (1994) J. Comput. Phys. , vol.113 , pp. 279-290
    • Huang, W.1    Ren, Y.2    Russell, R.3
  • 15
    • 0029394002 scopus 로고
    • Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis
    • N. J. KOPELL AND M. LANDMAN, Spatial structure of the focusing singularity of the nonlinear Schrödinger equation: A geometrical analysis, SIAM J. Appl. Math., 55 (1995), pp. 1297-1323.
    • (1995) SIAM J. Appl. Math. , vol.55 , pp. 1297-1323
    • Kopell, N.J.1    Landman, M.2
  • 17
    • 67649370945 scopus 로고    scopus 로고
    • The Ginzburg-Landau equation in its role as a modulation equation
    • North-Holland, Amsterdam
    • A. MIELKE, The Ginzburg-Landau equation in its role as a modulation equation, in Handbook of Dynamical Systems 2, North-Holland, Amsterdam, 2002, pp. 759-834.
    • (2002) Handbook of Dynamical Systems , vol.2 , pp. 759-834
    • Mielke, A.1
  • 18
    • 0014662728 scopus 로고
    • Finite bandwidth, finite amplitude convection
    • A. C. NEWELL AND J. A. WHITEHEAD, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 28 (1969), pp. 279-303.
    • (1969) J. Fluid Mech. , vol.28 , pp. 279-303
    • Newell, A.C.1    Whitehead, J.A.2
  • 19
    • 0035613474 scopus 로고    scopus 로고
    • On self-similar singular solutions of the complex Ginzburg-Landau equation
    • P. PLECHÁČ AND V. ŠVERÁK, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math., 54 (2001), pp. 1215-1242.
    • (2001) Comm. Pure Appl. Math. , vol.54 , pp. 1215-1242
    • Plecháč, P.1    Šverák, V.2
  • 20
    • 0002626123 scopus 로고
    • A hybrid method for nonlinear equations
    • P. Rabinowitz, ed., Gordon and Breach, New York
    • M. J. D. POWELL, A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, New York, 1988, pp. 87-114.
    • (1988) Numerical Methods for Nonlinear Algebraic Equations , pp. 87-114
    • Powell, M.J.D.1
  • 21
    • 0037091782 scopus 로고    scopus 로고
    • Blow-up in the nonlinear Schrödinger equation near critical dimension
    • V. ROTTSCHÄFER AND T. KAPER, Blow-up in the nonlinear Schrödinger equation near critical dimension, J. Math. Anal. Appl., 268 (2002), pp. 517-549.
    • (2002) J. Math. Anal. Appl. , vol.268 , pp. 517-549
    • Rottschäfer, V.1    Kaper, T.2
  • 22
    • 0242277031 scopus 로고    scopus 로고
    • Geometric theory for multi-bump, self-similar, blow-up solutions of the cubic nonlinear Schrödinger equation
    • V. ROTTSCHÄFER AND T. KAPER, Geometric theory for multi-bump, self-similar, blow-up solutions of the cubic nonlinear Schrödinger equation, Nonlinearity, 16 (2003), pp. 929-961.
    • (2003) Nonlinearity , vol.16 , pp. 929-961
    • Rottschäfer, V.1    Kaper, T.2
  • 23
    • 84959644006 scopus 로고
    • A nonlinear instability theory for a wave system in plane Poiseuille flow
    • K. STEWARTSON AND J. STUART, A nonlinear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), pp. 529-545.
    • (1971) J. Fluid Mech. , vol.48 , pp. 529-545
    • Stewartson, K.1    Stuart, J.2
  • 24
    • 4344669019 scopus 로고    scopus 로고
    • The nonlinear schrödinger equation
    • Springer-Verlag, Berlin
    • C. SULEM AND P. L. SULEM, The Nonlinear Schrödinger Equation, Appl. Math. Sci. 139, Springer-Verlag, Berlin, 1999.
    • (1999) Appl. Math. Sci. , vol.139
    • Sulem, C.1    Sulem, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.