메뉴 건너뛰기




Volumn 52, Issue 1, 2000, Pages 5-22

Non-linear dynamic projection to latent structures modelling

Author keywords

Feed forward neural networks; Non linear PLS; Radial basis function network

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; DATA ANALYSIS; MODEL; PRIORITY JOURNAL;

EID: 0034648471     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0169-7439(00)00083-6     Document Type: Article
Times cited : (53)

References (23)
  • 2
    • 0033611717 scopus 로고    scopus 로고
    • Non-linear Projection to Latent Structures revisited (The Quadratic PLS Algorithm)
    • Baffi G., Martin E.B., Morris A.J. Non-linear Projection to Latent Structures revisited (The Quadratic PLS Algorithm). Comput. Chem. Eng. 23:1999;395-411.
    • (1999) Comput. Chem. Eng. , vol.23 , pp. 395-411
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 3
    • 0026853320 scopus 로고
    • Non-linear PLS Modelling using neural networks
    • Qin S.J., McAvoy T.J. Non-linear PLS Modelling using neural networks. Comput. Chem. Eng. 16:1992;379-391.
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 6
    • 0023952731 scopus 로고
    • The use of biased least-squares estimators for parameters in discrete-time pulse response models
    • Ricker N.L. The use of biased least-squares estimators for parameters in discrete-time pulse response models. Ind. Eng. Chem. Res. 27:1988;343-350.
    • (1988) Ind. Eng. Chem. Res. , vol.27 , pp. 343-350
    • Ricker, N.L.1
  • 8
    • 0033544443 scopus 로고    scopus 로고
    • Non-linear Projection to Latent Structures revisited. (The Neural Network PLS Algorithm)
    • Baffi G., Martin E.B., Morris A.J. Non-linear Projection to Latent Structures revisited. (The Neural Network PLS Algorithm). Comput. Chem. Eng. 1999;1293-1307.
    • (1999) Comput. Chem. Eng. , pp. 1293-1307
    • Baffi, G.1    Martin, E.B.2    Morris, A.J.3
  • 9
  • 12
    • 0025889432 scopus 로고
    • Issues in system identification
    • 0272-1708/91/0100-0029
    • Ljung L. Issues in system identification. IEEE Control Syst. 1991;25-29. 0272-1708/91/0100-0029.
    • (1991) IEEE Control Syst. , pp. 25-29
    • Ljung, L.1
  • 13
    • 85152373811 scopus 로고
    • Notes on the history and nature of Partial Least Squares (PLS) modelling
    • Geladi P. Notes on the history and nature of Partial Least Squares (PLS) modelling. J. Chemom. 2:1988;231-246.
    • (1988) J. Chemom. , vol.2 , pp. 231-246
    • Geladi, P.1
  • 14
    • 11144325691 scopus 로고
    • Partial Least-Squares regression: A tutorial
    • Geladi P., Kowalski B.R. Partial Least-Squares regression: a tutorial. Anal. Chim. Acta. 185:1986;1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 15
    • 0002741363 scopus 로고
    • Nonlinear Iterative Partial Least Squares (NIPALS) modelling: Some current developments
    • Krishnaiah, P.R.
    • Wold H. Nonlinear Iterative Partial Least Squares (NIPALS) modelling: some current developments. Multivariate Anal. III:1973;383-407. Krishnaiah, P.R.
    • (1973) Multivariate Anal. , vol.3 , pp. 383-407
    • Wold, H.1
  • 16
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal component analysis
    • Wold S. Cross-validatory estimation of the number of components in factor and principal component analysis. Technometrics. 20(4):1978;397-405.
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 17
    • 0013513311 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. SIAM J. Sci. Stat. Comput. 5:1989;175-191.
    • (1989) SIAM J. Sci. Stat. Comput. , vol.5 , pp. 175-191
    • Cybenko, G.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks. 2(5):1989;359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0027676119 scopus 로고
    • Dynamic PLS modelling for process control
    • Kaspar M.H., Ray W.H. Dynamic PLS modelling for process control. Chem. Eng. Sci. 48(20):1993;3447-3461.
    • (1993) Chem. Eng. Sci. , vol.48 , Issue.20 , pp. 3447-3461
    • Kaspar, M.H.1    Ray, W.H.2
  • 22
    • 0028856468 scopus 로고
    • A non-linear dynamic model identification challenge problem
    • Wise B.M., Haesloop D. A non-linear dynamic model identification challenge problem. Chemom. Intell. Lab. Syst. 30:1995;91-96.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 91-96
    • Wise, B.M.1    Haesloop, D.2
  • 23
    • 0029207879 scopus 로고
    • Diagonal recurrent neural network for dynamic system control
    • Ku C.C., Lee K.Y. Diagonal recurrent neural network for dynamic system control. IEEE Trans. Neural Networks. 6(1):1995;144-155.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 144-155
    • Ku, C.C.1    Lee, K.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.