-
1
-
-
50149121516
-
-
See: Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry; VCH Publisher: Deerfield Beach, FL, 1985211
-
See: Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry; VCH Publisher: Deerfield Beach, FL, 1985211
-
-
-
-
2
-
-
0010202427
-
-
Nishida, A.; Akagawa, Y.; Shirakawa, S.; Fujisaki, S.; Kajigaeshi, S. Can. J. Chem. 1991, 69, 615-619.
-
(1991)
Can. J. Chem
, vol.69
, pp. 615-619
-
-
Nishida, A.1
Akagawa, Y.2
Shirakawa, S.3
Fujisaki, S.4
Kajigaeshi, S.5
-
3
-
-
41649107327
-
-
Casarini, D.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2008, 73, 2811-2818.
-
(2008)
J. Org. Chem
, vol.73
, pp. 2811-2818
-
-
Casarini, D.1
Lunazzi, L.2
Mazzanti, A.3
-
4
-
-
0022365837
-
-
Gualtieri, F.; Teodori, E.; Bellucci, C.; Pesce, E.; Piacenza, G. J. Med. Chem. 1985, 28, 1621-1628.
-
(1985)
J. Med. Chem
, vol.28
, pp. 1621-1628
-
-
Gualtieri, F.1
Teodori, E.2
Bellucci, C.3
Pesce, E.4
Piacenza, G.5
-
5
-
-
34447319097
-
-
As often observed in conformational processes, the free energy of activation was found independent of temperature within the errors, indicating a negligible value of ΔS≠. See, for instance: (a) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72, 5391-5394, and references quoted therein.
-
As often observed in conformational processes, the free energy of activation was found independent of temperature within the errors, indicating a negligible value of ΔS≠. See, for instance: (a) Lunazzi, L.; Mancinelli, M.; Mazzanti, A. J. Org. Chem. 2007, 72, 5391-5394, and references quoted therein.
-
-
-
-
6
-
-
50149119642
-
-
1 point group, as in Scheme 1) due to the frozen C9-CHO rotation at that temperature.
-
1 point group, as in Scheme 1) due to the frozen C9-CHO rotation at that temperature.
-
-
-
-
8
-
-
50149095380
-
-
i bond rotation is fast, this process would create a dynamic plane of symmetry that would render isochronous the isopropyl methyls and aromatic signals, in contrast with the experimental observations at-146°C
-
i bond rotation is fast, this process would create a dynamic plane of symmetry that would render isochronous the isopropyl methyls and aromatic signals, in contrast with the experimental observations at-146°C
-
-
-
-
9
-
-
0035874738
-
-
(a) Grilli, S.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2001, 66, 4444-4446.
-
(2001)
J. Org. Chem
, vol.66
, pp. 4444-4446
-
-
Grilli, S.1
Lunazzi, L.2
Mazzanti, A.3
-
10
-
-
0035943274
-
-
(b) Grilli, S.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2001, 66, 5853-5858.
-
(2001)
J. Org. Chem
, vol.66
, pp. 5853-5858
-
-
Grilli, S.1
Lunazzi, L.2
Mazzanti, A.3
-
11
-
-
0142121738
-
-
(c) Jog, P. V.; Brown, R. E.; Bates, D. K. J. Org. Chem. 2003, 68, 8240-8243.
-
(2003)
J. Org. Chem
, vol.68
, pp. 8240-8243
-
-
Jog, P.V.1
Brown, R.E.2
Bates, D.K.3
-
12
-
-
0345871941
-
-
(d) Casarini, D.; Grilli, S.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 2004, 69, 345-351.
-
(2004)
J. Org. Chem
, vol.69
, pp. 345-351
-
-
Casarini, D.1
Grilli, S.2
Lunazzi, L.3
Mazzanti, A.4
-
13
-
-
2442620207
-
-
(e) Casarini, D.; Lunazzi, L.; Mazzanti, A.; Mercandelli, P.; Sironi, A. J. Org. Chem. 2004, 69, 3574-3577.
-
(2004)
J. Org. Chem
, vol.69
, pp. 3574-3577
-
-
Casarini, D.1
Lunazzi, L.2
Mazzanti, A.3
Mercandelli, P.4
Sironi, A.5
-
14
-
-
20444485684
-
-
(f) Lunazzi, L.; Mazzanti, A.; Minzoni, M. Tetrahedron 2005, 61, 6782-6790.
-
(2005)
Tetrahedron
, vol.61
, pp. 6782-6790
-
-
Lunazzi, L.1
Mazzanti, A.2
Minzoni, M.3
-
15
-
-
50149089750
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin,A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin,A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Poplez, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
-
-
-
-
16
-
-
50149098534
-
-
2)-C9-CHO dihedral angles of the lower (TS-1) and higher (TS-2) energy transition states are 0° and 121°, respectively.
-
2)-C9-CHO dihedral angles of the lower (TS-1) and higher (TS-2) energy transition states are 0° and 121°, respectively.
-
-
-
-
17
-
-
50149095931
-
-
2 dihedral angle of 3 is 21° in the computed and 25° in the X-ray structure (Figure 4).
-
2 dihedral angle of 3 is 21° in the computed and 25° in the X-ray structure (Figure 4).
-
-
-
-
18
-
-
50149086270
-
-
In both 2 and 3 the same barriers were obtained when monitoring the aromatic signals, as in the case of the aldehyde 1.
-
In both 2 and 3 the same barriers were obtained when monitoring the aromatic signals, as in the case of the aldehyde 1.
-
-
-
-
19
-
-
33845375398
-
-
Bonini, B. F.; Grossi, L.; Lunazzi, L.; Macciantelli, D. J. Org. Chem. 1986, 51, 517-522.
-
(1986)
J. Org. Chem
, vol.51
, pp. 517-522
-
-
Bonini, B.F.1
Grossi, L.2
Lunazzi, L.3
Macciantelli, D.4
-
20
-
-
0034685987
-
-
-1. Lunazzi, L, Mazzanti, A, Muñoz̀ Alvarez, A. J. Org. Chem. 2000, 65, 3200-3206
-
-1. Lunazzi, L.; Mazzanti, A.; Muñoz̀ Alvarez, A. J. Org. Chem. 2000, 65, 3200-3206.
-
-
-
-
21
-
-
0000371936
-
-
In the case of 1,4-diacyl naphthalene derivatives the two barriers are 10.2 and 22.1 kcal mol-2, respectively. Casarini, D, Lunazzi, L, Mazzanti, A, Foresti, E. J. Org. Chem. 1998, 63, 4991-4995
-
-2, respectively. Casarini, D.; Lunazzi, L.; Mazzanti, A.; Foresti, E. J. Org. Chem. 1998, 63, 4991-4995.
-
-
-
-
22
-
-
0030021430
-
-
-1, respectively. Casarini, D.; Lunazzi, L.; Verbeek, R. Tetrahedron 1996, 52, 2471-2480.
-
-1, respectively. Casarini, D.; Lunazzi, L.; Verbeek, R. Tetrahedron 1996, 52, 2471-2480.
-
-
-
-
23
-
-
50149091052
-
-
Whereas the rotation of the MeCO group in 2 has a quite low DFT calculated barrier (3.9 kcal mol-1, that for the complete rotation of the ButCO is computed to be much higher (15.5 kcal mol -1, as expected according to ref 15. The effect of this motion (see also Figure S-5 in the Supporting Information) is, however, NMR invisible in 3 because, when such a rotation is frozen, the molecule adopts solely the preferred conformation shown in Figure 4. In this situation the small amplitude libration of 21° 12about the plane defined by the dihedral O-C-C9-CHMe2, 0 can still take place. This process appears to be driven by the C9-Pri rotation and when this combined motion is fast, it still allows the existence of a dynamic plane of symmetry, which keeps isochronous the isopropyl methyl and aromatic signals of 3. Only when this lower energy process is also frozen will anisochronous signals be NMR detect
-
-1, as in Table 1).
-
-
-
-
24
-
-
50149099337
-
-
This is further confirmed by the unusual high field shift observed for the acetyl methyl signal of 2 (1.53 ppm) and for the tert-butyl methyl signal of 3 0.64 ppm, These groups, in fact, experience the well-known effect of the aromatic ring currents because they lay above the fluorenyl ring; see: Jackman, L. M, Sternhell, S. Applications of NMR Spectroscopy in Organic Chemistry, 2nd ed, Pergamon Press: Oxford, UK, 1969; p 95
-
This is further confirmed by the unusual high field shift observed for the acetyl methyl signal of 2 (1.53 ppm) and for the tert-butyl methyl signal of 3 (0.64 ppm). These groups, in fact, experience the well-known effect of the aromatic ring currents because they lay above the fluorenyl ring; see: Jackman, L. M.; Sternhell, S. Applications of NMR Spectroscopy in Organic Chemistry, 2nd ed.; Pergamon Press: Oxford, UK, 1969; p 95.
-
-
-
-
25
-
-
0035200608
-
-
Jennings, W. B.; Farrell, B. M.; Malone, J. F. Acc. Chem. Res. 2001, 34, 885-894.
-
(2001)
Acc. Chem. Res
, vol.34
, pp. 885-894
-
-
Jennings, W.B.1
Farrell, B.M.2
Malone, J.F.3
-
28
-
-
0032495626
-
-
Thermodynamic corrections were also applied in standard conditions, using unsealed harmonic frequencies, and the corresponding results are reported in Tables S1-3 of the Supporting Information. However, these values cannot be meaningfully compared to the present experimental data because of the different temperatures, and to relevant errors in the computation of the entropic factor (see for instance: Ayala, P. Y.; Schlegel, H. B. J. Chem. Phys. 1998, 108, 2314-2325).
-
Thermodynamic corrections were also applied in standard conditions, using unsealed harmonic frequencies, and the corresponding results are reported in Tables S1-3 of the Supporting Information. However, these values cannot be meaningfully compared to the present experimental data because of the different temperatures, and to relevant errors in the computation of the entropic factor (see for instance: Ayala, P. Y.; Schlegel, H. B. J. Chem. Phys. 1998, 108, 2314-2325).
-
-
-
|