메뉴 건너뛰기




Volumn 48, Issue 7-8, 2008, Pages 1265-1278

An optimization-based approach for the design of Bayesian networks

Author keywords

Bayesian networks; Optimal design

Indexed keywords

DISTRIBUTED PARAMETER NETWORKS; GRAPH THEORY; INFERENCE ENGINES; INTEGER PROGRAMMING; INTELLIGENT NETWORKS; OPTIMIZATION; SPEECH ANALYSIS; SPEECH RECOGNITION; STRUCTURAL OPTIMIZATION; TOPOLOGY;

EID: 49849086680     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2008.01.007     Document Type: Article
Times cited : (38)

References (44)
  • 1
    • 0028391713 scopus 로고
    • The design of belief network-based systems for price forecasting
    • Abramson B. The design of belief network-based systems for price forecasting. Computers and Electrical Engineering 20 (1994) 163-180
    • (1994) Computers and Electrical Engineering , vol.20 , pp. 163-180
    • Abramson, B.1
  • 3
    • 49849083113 scopus 로고    scopus 로고
    • I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks, in: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, 1989, pp. 247-256
    • I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks, in: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, 1989, pp. 247-256
  • 4
    • 49849103285 scopus 로고    scopus 로고
    • J.R. Castelo, The discrete acyclic digraph Markov model in data mining, Ph.D. Thesis, University of Utrecht, 2002
    • J.R. Castelo, The discrete acyclic digraph Markov model in data mining, Ph.D. Thesis, University of Utrecht, 2002
  • 6
    • 49849097563 scopus 로고    scopus 로고
    • J. Cheng, D.A. Bell, W. Liu, An algorithm for Bayesian belief network construction from data, in: Proceedings of the 6th International Workshop on Artificial Intelligence, 1997
    • J. Cheng, D.A. Bell, W. Liu, An algorithm for Bayesian belief network construction from data, in: Proceedings of the 6th International Workshop on Artificial Intelligence, 1997
  • 7
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An efficient approach based on information theory
    • Cheng J., Greiner R., Kelly J., Bell D., and Liu W. Learning Bayesian networks from data: An efficient approach based on information theory. Artificial Intelligence 137 (2000) 43-90
    • (2000) Artificial Intelligence , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 8
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian network structures
    • Chickering D.M. A transformational characterization of equivalent Bayesian network structures. Uncertainty in Artificial Intelligence 11 (1995) 87-98
    • (1995) Uncertainty in Artificial Intelligence , vol.11 , pp. 87-98
    • Chickering, D.M.1
  • 9
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian networks structures
    • Chickering D.M. Learning equivalence classes of Bayesian networks structures. Journal of Machine Learning Research 2 (2002) 445-498
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 10
    • 49849086980 scopus 로고    scopus 로고
    • D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is NP-Hard, Technical Report MSR-TR-94-17, Microsoft Research, 1994
    • D.M. Chickering, D. Geiger, D. Heckerman, Learning Bayesian networks is NP-Hard, Technical Report MSR-TR-94-17, Microsoft Research, 1994
  • 12
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C., and Liu C. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14 (1968) 462-467
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 13
    • 49849086594 scopus 로고    scopus 로고
    • C. Conati, K. VanLehn, Probabilistic plan recognition for cognitive apprenticeship, in: Proceedings of the 18th Annual Conference of the Cognitive Science Society, 1996
    • C. Conati, K. VanLehn, Probabilistic plan recognition for cognitive apprenticeship, in: Proceedings of the 18th Annual Conference of the Cognitive Science Society, 1996
  • 15
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9 (1992) 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 16
    • 49849101246 scopus 로고    scopus 로고
    • D. Dash, M.J. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data, in: Proceedings of the Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, 1999, pp. 142-149
    • D. Dash, M.J. Druzdzel, A hybrid anytime algorithm for the construction of causal models from sparse data, in: Proceedings of the Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, 1999, pp. 142-149
  • 17
    • 49849105189 scopus 로고    scopus 로고
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proceedings of the Proceedings of the Twelfth International Conference on Machine Learning, 1995, pp. 194-202
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proceedings of the Proceedings of the Twelfth International Conference on Machine Learning, 1995, pp. 194-202
  • 19
    • 49849087477 scopus 로고    scopus 로고
    • D. Geiger, A. Paz, J. Pearl, Learning causal trees from dependence information, Technical Report R-149, Computer Science Department, University of California, 1990
    • D. Geiger, A. Paz, J. Pearl, Learning causal trees from dependence information, Technical Report R-149, Computer Science Department, University of California, 1990
  • 20
    • 14344256569 scopus 로고    scopus 로고
    • D. Grossmann, P. Domingos, Learning Bayesian network classifiers by maximizing conditional likelihood, in: Proceedings of the Twenty First International Conference on Machine Learning, Banff, Canada, 2004
    • D. Grossmann, P. Domingos, Learning Bayesian network classifiers by maximizing conditional likelihood, in: Proceedings of the Twenty First International Conference on Machine Learning, Banff, Canada, 2004
  • 21
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20 (1995) 197-243
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 22
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • Henrion M. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Uncertainty in Artificial Intelligence 2 (1988) 149-163
    • (1988) Uncertainty in Artificial Intelligence , vol.2 , pp. 149-163
    • Henrion, M.1
  • 23
    • 0012062308 scopus 로고
    • Kutató: An entropy-driven system for construction of probabilistic expert systems from databases
    • Herskovits E., and Cooper G. Kutató: An entropy-driven system for construction of probabilistic expert systems from databases. Uncertainty in Artificial Intelligence 6 (1991) 117-125
    • (1991) Uncertainty in Artificial Intelligence , vol.6 , pp. 117-125
    • Herskovits, E.1    Cooper, G.2
  • 26
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application on expert systems
    • Lauritzen S., and Spiegelhalter D.J. Local computations with probabilities on graphical structures and their application on expert systems. Journal of the Royal Statistical Society B 50 (1988) 157-224
    • (1988) Journal of the Royal Statistical Society , vol.B 50 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.J.2
  • 27
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian O.L., and Wolberg W.H. Cancer diagnosis via linear programming. SIAM News 23 (1990) 1-18
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 28
    • 0030800524 scopus 로고    scopus 로고
    • Mentor: A Bayesian model for prediction of mental retardation in newborns
    • Mani S., McDermott S., and Valtorta M. Mentor: A Bayesian model for prediction of mental retardation in newborns. Research in Developmental Disabilities 18 (1997) 303-318
    • (1997) Research in Developmental Disabilities , vol.18 , pp. 303-318
    • Mani, S.1    McDermott, S.2    Valtorta, M.3
  • 29
    • 84944328745 scopus 로고    scopus 로고
    • D. Margaritis, C. Faloutsos, S. Thrun, NetCube: A scalable tool for fast data mining and compression, in: Proceedings of the 27th Conference on Very Large Databases, VLDB, Rome, Italy, 2001
    • D. Margaritis, C. Faloutsos, S. Thrun, NetCube: A scalable tool for fast data mining and compression, in: Proceedings of the 27th Conference on Very Large Databases, VLDB, Rome, Italy, 2001
  • 30
    • 49849087220 scopus 로고    scopus 로고
    • C. Meek, Graphical models: Selecting causal and statistical models, Ph.D. Thesis, Carnegie Mellon University, 1997
    • C. Meek, Graphical models: Selecting causal and statistical models, Ph.D. Thesis, Carnegie Mellon University, 1997
  • 31
    • 1942452317 scopus 로고    scopus 로고
    • A.W. Moore, W.-K. Wong, Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning, in: Proceedings of the Twentieth International Conference in Machine Learning, ICML-2003, Washington, DC, 2003
    • A.W. Moore, W.-K. Wong, Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning, in: Proceedings of the Twentieth International Conference in Machine Learning, ICML-2003, Washington, DC, 2003
  • 32
    • 49849103419 scopus 로고    scopus 로고
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, Irvine, CA, Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/ mlearn/MLRepository.html
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, Irvine, CA, Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/ mlearn/MLRepository.html
  • 33
    • 49849092014 scopus 로고    scopus 로고
    • J. Pearl, Bayesian networks, causal inference and knowledge discovery, Technical Report R-281, UCLA Cognitive Systems Laboratory, 2001
    • J. Pearl, Bayesian networks, causal inference and knowledge discovery, Technical Report R-281, UCLA Cognitive Systems Laboratory, 2001
  • 34
    • 0002444961 scopus 로고    scopus 로고
    • Counting unlabeled acyclic digraphs
    • Combinatorial Mathematics, Springer-Verlang, New-York
    • Robinson R.W. Counting unlabeled acyclic digraphs. Combinatorial Mathematics. Lectures Notes in Mathematics vol. 622 (1997), Springer-Verlang, New-York 28-43
    • (1997) Lectures Notes in Mathematics , vol.622 , pp. 28-43
    • Robinson, R.W.1
  • 35
    • 49849098494 scopus 로고    scopus 로고
    • J. Royalty, R. Holland, J. Goldsmith, A. Dekhtyar, POET: The online preference elicitation tool, Technical Report WS-02-13, AAAI, 2002
    • J. Royalty, R. Holland, J. Goldsmith, A. Dekhtyar, POET: The online preference elicitation tool, Technical Report WS-02-13, AAAI, 2002
  • 36
    • 0030087036 scopus 로고    scopus 로고
    • Constructing efficient belief network structures with expert provided information
    • Sarkar S., and Murthy I. Constructing efficient belief network structures with expert provided information. IEEE Transactions on Knowledge and Data Engineering 89 (1996) 134-143
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.89 , pp. 134-143
    • Sarkar, S.1    Murthy, I.2
  • 37
    • 0035521221 scopus 로고    scopus 로고
    • Bayesian models for early warning of bank failures
    • Sarkar S., and Sriram S. Bayesian models for early warning of bank failures. Management Science 47 11 (2001) 1457-1475
    • (2001) Management Science , vol.47 , Issue.11 , pp. 1457-1475
    • Sarkar, S.1    Sriram, S.2
  • 39
    • 49849099574 scopus 로고    scopus 로고
    • A.P. Singh, A.W. Moore, Findign optimal Bayesian networks by dynamic programming, CMU-CALD-05-106, Pittsburgh, PA, School of computer science, Carnegie Mellon University, 2005. http://www.autonlab.org/autonweb/14757.html
    • A.P. Singh, A.W. Moore, Findign optimal Bayesian networks by dynamic programming, CMU-CALD-05-106, Pittsburgh, PA, School of computer science, Carnegie Mellon University, 2005. http://www.autonlab.org/autonweb/14757.html
  • 41
    • 49849101795 scopus 로고    scopus 로고
    • J.G. Torres-Toledano, L. Sucar, Bayesian networks for reliability analysis of complex systems, Progress in Artificial Intelligence, IBERAMIA, 1998
    • J.G. Torres-Toledano, L. Sucar, Bayesian networks for reliability analysis of complex systems, Progress in Artificial Intelligence, IBERAMIA, 1998
  • 42
    • 49849083736 scopus 로고    scopus 로고
    • Modeling complex management games with Bayesian networks: The FutSim case of study
    • Edmonton, Canada
    • Valadares J., Ramalho G., and Ladeira M. Modeling complex management games with Bayesian networks: The FutSim case of study. Proceedings of the Agents in Computer Games (2002), Edmonton, Canada
    • (2002) Proceedings of the Agents in Computer Games
    • Valadares, J.1    Ramalho, G.2    Ladeira, M.3
  • 43
    • 1942484473 scopus 로고    scopus 로고
    • W.-K. Wong, A.W. Moore, G. Cooper, M. Wagner, Bayesian network anomaly pattern detection for disease outbreaks, in: Proceedings of the Twentieth International Conference on Machine Learning, ICML-2003. Washington, DC, 2003
    • W.-K. Wong, A.W. Moore, G. Cooper, M. Wagner, Bayesian network anomaly pattern detection for disease outbreaks, in: Proceedings of the Twentieth International Conference on Machine Learning, ICML-2003. Washington, DC, 2003


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.