메뉴 건너뛰기




Volumn , Issue , 2007, Pages 173-182

Dynamic micro targeting: Fitness-based approach to predicting individual preferences

Author keywords

Customer profiles; Customer segmentation; Marketing application; Micro targeting; Personalization

Indexed keywords

CUSTOMER BEHAVIOR; CUSTOMER DATA; CUSTOMER PROFILES; CUSTOMER SEGMENTATION; DATA-MINING MODELS; DIRECT GROUPING; EXPERIMENTAL CONDITIONS; INDIVIDUAL PREFERENCES; INTERNATIONAL CONFERENCES; MARKETING APPLICATION; MICRO TARGETING; PERSONALIZATION; PERSONALIZED PRODUCTS; PREDICTIVE MODELING; PRODUCT GROUPS; SEGMENTATION METHODS; TARGETING METHOD; TRANSACTIONAL DATA;

EID: 49749104244     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2007.14     Document Type: Conference Paper
Times cited : (6)

References (23)
  • 1
    • 13844254250 scopus 로고    scopus 로고
    • Incorporating contextual information in recommender systems using a multidimensional approach
    • Adomavicius, G., R. Sankaranarayanan, S. Sen, and A. Tuzhilin, Incorporating contextual information in recommender systems using a multidimensional approach. ACM TOIS, 2005. 23(1): p. 103-145.
    • (2005) ACM TOIS , vol.23 , Issue.1 , pp. 103-145
    • Adomavicius, G.1    Sankaranarayanan, R.2    Sen, S.3    Tuzhilin, A.4
  • 2
    • 32644464870 scopus 로고    scopus 로고
    • Personalization technologies: A process-oriented perspective
    • Adomavicius, G. and A. Tuzhilin, Personalization technologies: A process-oriented perspective, in CACM. 2005.
    • (2005) CACM
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 34748824539 scopus 로고    scopus 로고
    • Using shopping baskets to cluster supermarket shoppers
    • Amelia Island Plantation, FL
    • Brijs, T., T. Swinnen, K. Vanhoof, and G. Wets. Using shopping baskets to cluster supermarket shoppers. in AARTF. 2001. Amelia Island Plantation, FL.
    • (2001) AARTF
    • Brijs, T.1    Swinnen, T.2    Vanhoof, K.3    Wets, G.4
  • 5
    • 85139983802 scopus 로고
    • Supervised and Unsupervised Discretization of Continuous Features
    • San Francisco, CA: Morgan Kaufmann
    • Dougherty, J., R. Kohavi, and M. Sahami. Supervised and Unsupervised Discretization of Continuous Features. in 12th ICML. 1995. San Francisco, CA: Morgan Kaufmann.
    • (1995) 12th ICML
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 7
    • 0002593344 scopus 로고
    • Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning
    • Fayyad, U.M. and K.B. Irani. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. in IJCAI. 1993.
    • (1993) IJCAI
    • Fayyad, U.M.1    Irani, K.B.2
  • 8
    • 49749087308 scopus 로고    scopus 로고
    • Frey, B. and D. Dueck, Mixture Modeling by Affinity Propagation. Advances in Neural Information Processing Systems 18, ed. Y. Weiss, B. Scholkopf, and J. Platt. 2006: MIT Press.
    • Frey, B. and D. Dueck, Mixture Modeling by Affinity Propagation. Advances in Neural Information Processing Systems 18, ed. Y. Weiss, B. Scholkopf, and J. Platt. 2006: MIT Press.
  • 9
    • 34748919488 scopus 로고    scopus 로고
    • Personalization in Context: Does Context Matter When Building Personalized Customer Models?
    • Gorgoglione, M., C. Palmisano, and A. Tuzhilin. Personalization in Context: Does Context Matter When Building Personalized Customer Models? in ICDM. 2006.
    • (2006) ICDM
    • Gorgoglione, M.1    Palmisano, C.2    Tuzhilin, A.3
  • 10
    • 0022064511 scopus 로고    scopus 로고
    • Hochbaum, S.D. and B.D. Shmoys, A Best Possible Heuristic for the K-Center Problem. Math. of Operational Research, 1985.
    • Hochbaum, S.D. and B.D. Shmoys, A Best Possible Heuristic for the K-Center Problem. Math. of Operational Research, 1985.
  • 11
    • 84901929161 scopus 로고    scopus 로고
    • Forming Segments From Individuals Using Direct Grouping Methods
    • Jiang, T. and A. Tuzhilin. Forming Segments From Individuals Using Direct Grouping Methods. in WITS. 2006.
    • (2006) WITS
    • Jiang, T.1    Tuzhilin, A.2
  • 12
    • 42149113083 scopus 로고    scopus 로고
    • Improving Personalization Solutions through Optimal Segmentation of Customer Bases
    • Jiang, T. and A. Tuzhilin. Improving Personalization Solutions through Optimal Segmentation of Customer Bases. in ICDM. 2006.
    • (2006) ICDM
    • Jiang, T.1    Tuzhilin, A.2
  • 13
    • 33748351404 scopus 로고    scopus 로고
    • Segmenting Customers from Population to Individual: Does 1-to-1 Keep Your Customers Forever?
    • Jiang, T. and A. Tuzhilin, Segmenting Customers from Population to Individual: Does 1-to-1 Keep Your Customers Forever? IEEE TKDE, 2006. 18(10).
    • (2006) IEEE TKDE , vol.18 , Issue.10
    • Jiang, T.1    Tuzhilin, A.2
  • 14
    • 0000468432 scopus 로고
    • Estimating Continuous Distributions in Bayesian Classifiers
    • John, G.H. and P. Langley. Estimating Continuous Distributions in Bayesian Classifiers. in UAI. 1995.
    • (1995) UAI
    • John, G.H.1    Langley, P.2
  • 17
    • 3543126522 scopus 로고    scopus 로고
    • Clustering Based on Data Patterns using Hypergraph Models
    • Ozdal, M. and C. Aykanat, Clustering Based on Data Patterns using Hypergraph Models. Data Mining and Knowledge Discovery, 2004. 9: p. 29-57.
    • (2004) Data Mining and Knowledge Discovery , vol.9 , pp. 29-57
    • Ozdal, M.1    Aykanat, C.2
  • 19
    • 49749146843 scopus 로고    scopus 로고
    • Quinlan, R., C4.5: Programs for Machine Learning. 1993.
    • Quinlan, R., C4.5: Programs for Machine Learning. 1993.
  • 20
    • 0001892369 scopus 로고
    • Product Differentiation and Market Segmentation as Alternative Marketing Strategies
    • Smith, W., Product Differentiation and Market Segmentation as Alternative Marketing Strategies. Journal of Marketing, 1956. 21.
    • (1956) Journal of Marketing , vol.21
    • Smith, W.1
  • 23
    • 78149303205 scopus 로고    scopus 로고
    • Segmenting Customer Trans. Using a Pattern-Based Clustering Approach
    • Yang, Y. and B. Padmanabhan. Segmenting Customer Trans. Using a Pattern-Based Clustering Approach. in ICDM. 2003.
    • (2003) ICDM
    • Yang, Y.1    Padmanabhan, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.