메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1-33

Information extraction: Methodologies and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 49749096520     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59904-373-9.ch001     Document Type: Chapter
Times cited : (28)

References (70)
  • 1
    • 0002165449 scopus 로고
    • Parsing by chunks
    • In R. Berwick, S. Abney, & C. Tenny (Eds.), Boston, Kluwer Academic Publishers
    • Abney, S. (1991). Parsing by chunks. In R. Berwick, S. Abney, & C. Tenny (Eds.), Principle-based parsing: Computation and psycholinguistics (pp. 257-278). Boston: Kluwer Academic Publishers.
    • (1991) Principle-based Parsing: Computation and Psycholinguistics , pp. 257-278
    • Abney, S.1
  • 3
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • In D. Haussler (Ed.), Pittsburgh, PA, ACM Press
    • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In D. Haussler (Ed.), 5th Annual ACM Workshop on COLT (pp. 144-152). Pittsburgh, PA: ACM Press.
    • (1992) 5th Annual ACM Workshop On COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 5
    • 46749106163 scopus 로고    scopus 로고
    • Statistical relational learning for natural language information extraction
    • In L. Getoor & B. Taskar (Eds.), forthcoming
    • Bunescu, R., & Mooney, R. J. (2005). Statistical relational learning for natural language information extraction. In L. Getoor & B. Taskar (Eds.), Statistical relational learning, forthcoming.
    • (2005) Statistical Relational Learning
    • Bunescu, R.1    Mooney, R.J.2
  • 7
    • 2342598419 scopus 로고    scopus 로고
    • Bottomup relational learning of pattern matching rules for information extraction
    • Califf, M. E., & Mooney, R. J. (2003). Bottomup relational learning of pattern matching rules for information extraction. Journal of Machine Learning Research, 4, 177-210.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 177-210
    • Califf, M.E.1    Mooney, R.J.2
  • 10
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in NLP (EMNLP'02) (pp. 1-8).
    • (2002) Proceedings of the Conference On Empirical Methods In NLP (EMNLP'02) , pp. 1-8
    • Collins, M.1
  • 12
    • 0001573124 scopus 로고
    • Generalized iterative scaling for log-linear models
    • Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics, 43(5), 1470-1480.
    • (1972) The Annals of Mathematical Statistics , vol.43 , Issue.5 , pp. 1470-1480
    • Darroch, J.N.1    Ratcliff, D.2
  • 13
    • 0001866024 scopus 로고    scopus 로고
    • E-mail as habitat: An exploration of embedded personal information management
    • Ducheneaut, N., & Bellotti, V. (2001). E-mail as habitat: An exploration of embedded personal information management. Interactions, 8, 30-38.
    • (2001) Interactions , vol.8 , pp. 30-38
    • Ducheneaut, N.1    Bellotti, V.2
  • 19
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Machine Learning, 29, 245-273.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 23
    • 9444286980 scopus 로고    scopus 로고
    • Interactive information extraction with constrained conditional random fields
    • Kristjansson, T. T., Culotta, A., Viola, P. A., & McCallum, A. (2004). Interactive information extraction with constrained conditional random fields. In Proceedings of AAAI'04 (pp. 412-418).
    • (2004) Proceedings of AAAI'04 , pp. 412-418
    • Kristjansson, T.T.1    Culotta, A.2    Viola, P.A.3    McCallum, A.4
  • 25
    • 0034172374 scopus 로고    scopus 로고
    • Wrapper induction: Efficiency and expressiveness
    • Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness. Artificial Intelligence, 118, 15-68.
    • (2000) Artificial Intelligence , vol.118 , pp. 15-68
    • Kushmerick, N.1
  • 27
    • 0032640910 scopus 로고    scopus 로고
    • Digital libraries and autonomous citation indexing
    • Lawrence, S., Giles, C. L., & Bollacker K. (1999). Digital libraries and autonomous citation indexing. IEEE Computer, 32(6), 67-71.
    • (1999) IEEE Computer , vol.32 , Issue.6 , pp. 67-71
    • Lawrence, S.1    Giles, C.L.2    Bollacker, K.3
  • 39
    • 78751517535 scopus 로고    scopus 로고
    • Accurate information extraction from research papers using conditional random fields
    • Peng, F., & McCallum, A. (2004). Accurate information extraction from research papers using conditional random fields. In Proceedings of HLT-NAACL (pp. 329-336).
    • (2004) Proceedings of HLT-NAACL , pp. 329-336
    • Peng, F.1    McCallum, A.2
  • 42
    • 85149110341 scopus 로고    scopus 로고
    • Unsupervised statistical models for prepositional phrase attachment
    • Montreal, Canada
    • Ratnaparkhi, A. (1998). Unsupervised statistical models for prepositional phrase attachment. In Proceedings of COLING ACL'98 (pp. 1079-1085). Montreal, Canada.
    • (1998) Proceedings of COLING ACL'98 , pp. 1079-1085
    • Ratnaparkhi, A.1
  • 51
    • 77957302183 scopus 로고    scopus 로고
    • An overview and classification of adaptive approaches to information extraction
    • Siefkes, C., & Siniakov, P. (2005). An overview and classification of adaptive approaches to information extraction. Journal on Data Semantics, 4, 172-212.
    • (2005) Journal On Data Semantics , vol.4 , pp. 172-212
    • Siefkes, C.1    Siniakov, P.2
  • 53
    • 0032624184 scopus 로고    scopus 로고
    • Learning information extraction rules for semi-structured and free text
    • 272
    • Soderland, S. (1999). Learning information extraction rules for semi-structured and free text. Machine Learning, 34(1-3), 299-272.
    • (1999) Machine Learning , vol.34 , Issue.1-3 , pp. 299
    • Soderland, S.1
  • 54
    • 14344253846 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. In Proceedings of ICML'2004 (pp. 783-790).
    • (2004) Proceedings of ICML'2004 , pp. 783-790
    • Sutton, C.1    Rohanimanesh, K.2    McCallum, A.3
  • 55
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • In L. Getoor & B. Taskar, Eds., forthcoming
    • Sutton, C., & McCallum, A. (2005). An introduction to conditional random fields for relational learning. In L. Getoor & B. Taskar (Eds.), Statistical relational learning, forthcoming.
    • (2005) Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 62


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.